【題目】如圖,點(diǎn)P、Q分別是邊長(zhǎng)為4cm的等邊△ABC邊AB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,下面四個(gè)結(jié)論正確的有________________.
①BP=CM;②△ABQ≌△CAP;③∠CMQ的度數(shù)不變,始終等于60°;④當(dāng)?shù)?/span>秒或第秒時(shí),△PBQ為直角三角形.
【答案】②③④
【解析】∵點(diǎn)P、Q分別是邊長(zhǎng)為4cm的等邊△ABC邊AB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,
∴AP=BQ,∠ABQ=∠CAP=60°,AB=CA,BP=CQ,
∴△ABQ≌△CAP.(即結(jié)論②成立);
∴∠BAQ=∠ACP,
∵∠CMQ=∠ACP+∠CAM,
∴∠CMQ=∠BAQ+∠CAM=∠CAP=60°.(即結(jié)論③成立);
又∵∠MQC>∠ABQ=60°,
∴∠MQC>∠CMQ,
∴MC>QC,即MC>BP.(即結(jié)論①不成立);
設(shè)t秒時(shí),△BPQ是直角三角形,此時(shí)AP=BQ=t,BP=4-t,
(1)當(dāng)∠PQB=90°,∵∠PBQ=60°,
∴∠BPQ=30°,
∴BQ=PB,即,解得: ;
(2)當(dāng)∠QPB=90°時(shí),∵∠PBQ=60°,
∴∠PQB=30°,
∴BP=BQ,即,解得: .
結(jié)合(1)、(2)可得:當(dāng)或時(shí),△BPQ是直角三角形.(即結(jié)論④成立);
綜上所述,正確的結(jié)論是:②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動(dòng)點(diǎn)M沿路線O→A→C運(yùn)動(dòng).
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)當(dāng)△OMC的面積是△OAC的面積的時(shí),求出這時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與x軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B(0,﹣2).
(1)求直線AB的解析式;
(2)若直線AB上的點(diǎn)C在第一象限,且S△BOC=2,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列說法:
(1)無(wú)理數(shù)就是開方開不盡的數(shù);(2)無(wú)理數(shù)包括正無(wú)理數(shù)、零、負(fù)無(wú)理數(shù);
(3)無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù);(4)無(wú)理數(shù)都可以用數(shù)軸上的點(diǎn)來表示.
其中正確的說法的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)P(a,b)是第二象限內(nèi)的點(diǎn),則點(diǎn)Q(b,a)在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形的兩邊長(zhǎng)分別為2和5,則該等腰三角形的周長(zhǎng)為( )
A.7B.9C.9或12D.12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com