【題目】小明在求一個多邊形的內(nèi)角和時,由于疏忽,把一個內(nèi)角加了兩遍,而求出的結(jié)果為2004°,請問這個內(nèi)角是多少度?這個多邊形是幾邊形?
【答案】24度,十三邊形.
【解析】
n邊形的內(nèi)角和是(n-2)180°,因而內(nèi)角和一定是180度的倍數(shù).而多邊形的內(nèi)角一定大于0,并且小于180度,因而內(nèi)角和再加上一個內(nèi)角的值,所得結(jié)果除以180度,所得數(shù)值比邊數(shù)n-2要大,且小于n-1,則用2004°除以180所得值的整數(shù)部分,加上2就是多邊形的邊數(shù).
設(shè)這個多邊形的邊數(shù)為x,
依題意有(x﹣2)180=2004,
解得x=13,
因而多邊形的邊數(shù)是13,該多邊形為十三邊形,
內(nèi)角和是(13﹣2)×180°=1980°,因而這個內(nèi)角是2004﹣1980=24°,
答:這個內(nèi)角是24度,這個多邊形是十三邊形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知甲同學(xué)手中藏有三張分別標(biāo)有數(shù)字 、 、1的卡片,乙同學(xué)手中藏有三張分別標(biāo)有數(shù)字1、3、2的卡片,卡片外形相同.現(xiàn)從甲乙兩人手中各任取一張卡片,并將它們的數(shù)字分別記為a,b.
(1)請你用樹形圖或列表法列出所有可能的結(jié)果;
(2)現(xiàn)制定一個游戲規(guī)則:若所選出的a,b能使得ax2+bx+1=0有兩個不相等的實(shí)數(shù)根,則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則公平嗎?請用概率知識解釋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,CE垂直對角線AC于點(diǎn)C,AB的延長線交CE于點(diǎn)E.
(1)求證:CD=BE;
(2)如果∠E=60°,CE=m,請寫出求菱形ABCD面積的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠A=∠ACB,CD是∠ACB的平分線,∠ADC=150°,則∠ABC的度數(shù)為_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①②,試研究其中∠1、∠2與∠3、∠4之間的數(shù)量關(guān)系;
(2)如果我們把∠1、∠2稱為四邊形的外角,那么請你用文字描述上述的關(guān)系式;
(3)用你發(fā)現(xiàn)的結(jié)論解決下列問題:
如圖,AE、DE分別是四邊形ABCD的外角∠NAD、∠MDA的平分線,∠B+∠C=240°,求∠E的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC的底邊BC=10cm,當(dāng)BC邊上的高線AD從小到大變化時,△ABC的面積也隨之變化.
(1)在這個變化過程中,自變量和因變量各是什么?
(2)△ABC的面積S(cm2)與高線h(cm)之間的關(guān)系式是什么?
(3)用表格表示當(dāng)h由4cm變到10cm時(每次增加1cm),S的相應(yīng)值;
(4)當(dāng)h每增加1cm時,S如何變化?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△BCE中,點(diǎn)A是邊BE上一點(diǎn),以AB為直徑的⊙O與CE相切于點(diǎn)D,AD∥OC,點(diǎn)F為OC與⊙O的交點(diǎn),連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果△ABC和△DEF這兩個三角形全等,點(diǎn)C和點(diǎn)E,點(diǎn)B和點(diǎn)D分別是對應(yīng)點(diǎn),則另一組對應(yīng)點(diǎn)是________,對應(yīng)邊是______________,對應(yīng)角是_____________,表示這兩個三角形全等的式子是___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com