【題目】【問題情境】一節(jié)數(shù)學課后,老師布置了一道課后練習題:
如圖:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于點D,點E、F分別在A和BC上,∠1=∠2,F(xiàn)G⊥AB于點G,求證:△CDE≌△EGF.
(1)閱讀理解,完成解答
本題證明的思路可用下列框圖表示:
根據(jù)上述思路,請你完整地書寫這道練習題的證明過程;
(2)特殊位置,證明結(jié)論
若CE平分∠ACD,其余條件不變,求證:AE=BF;
(3)知識遷移,探究發(fā)現(xiàn)
如圖,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于點D,若點E是DB的中點,點F在直線CB上且滿足EC=EF,請直接寫出AE與BF的數(shù)量關(guān)系.(不必寫解答過程)
【答案】(1)、證明過程見解析;(2)、證明過程見解析;(3)、AE=BF.
【解析】
試題分析:(1)、先證明CE=EF,根據(jù)AAS即可證明△CDE≌△EGF;(2)、先證∠ACE=∠2,再證明△ACE≌△BEF,即可得出AE=BF;(3)、作EH⊥BC與H,設(shè)DE=x,求出AE=3x,再證出BF=x,即可得出結(jié)論.
試題解析:(1)、∵AC=BC,∠ACB=90°, ∴∠A=∠B=45°, ∵CD⊥AB, ∴∠CDB=90°,
∴∠DCB=45°, ∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2, ∴∠ECF=∠EFC,
∴CE=EF, ∵CD⊥AB,F(xiàn)G⊥AB, ∴∠CDE=∠EGF=90°,
在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);
(2)、由(1)得:CE=EF,∠A=∠B, ∵CE平分∠ACD, ∴∠ACE=∠1, ∵∠1=∠2,∴∠ACE=∠2,
在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;
(3)、AE=BF,作EH⊥BC與H,如圖3所示:
設(shè)DE=x,根據(jù)題意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x, 根據(jù)勾股定理得:BC=AC=2x,
∵∠ABC=45°,EH⊥BC, ∴BH=x, ∴CH=BC﹣BH=x, ∵EC=EF, ∴FH=CH=x,
∴BF=x﹣x=x, ∴, ∴AE=BF.
科目:初中數(shù)學 來源: 題型:
【題目】某學校設(shè)計了如圖1-4-6的一個雕塑,取名“階梯”,現(xiàn)在工人師傅打算用油漆噴刷所有的暴露面.經(jīng)測量,已知每個小正方體的棱長為0.5 m,請你幫助工人師傅算一下,需噴刷油漆的總面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校的20年校慶舉辦了四個項目的比賽,現(xiàn)分別以A,B,C,D表示它們.要求每位同學必須參加且限報一項.以701班為樣本進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制如下兩幅統(tǒng)計圖,其中參加A項目的人數(shù)比參加C與D項目人數(shù)的總和多1人,參加D項目的人數(shù)比參加A項目的人數(shù)少11人.請你結(jié)合圖中所給出的信息解答下列問題:
(1)求出全班總?cè)藬?shù);
(2)求出扇形統(tǒng)計圖中參加D項目比賽的學生所在的扇形圓心角的度數(shù);
(3)若該校7年級學生共有200人,請你估計這次活動中參加A和B項目的學生共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某摩托車廠本周內(nèi)計劃每日生產(chǎn)300輛摩托車,由于工人實行輪休,每日上班人數(shù)不一定相等,實際每日生產(chǎn)量與計劃量相比情況如下表(增加的車輛數(shù)為正數(shù),減少的車輛數(shù)為負數(shù))
(1)本周三生產(chǎn)了摩托車 輛;
(2)本周總生產(chǎn)量與計劃生產(chǎn)量相比,是增加還是減少?
(3)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)了多少輛?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程數(shù).“燃油效率”越高表示汽車每消耗1升汽油行駛的里程數(shù)越多;“燃油效率”越低表示汽車每消耗1升汽油行駛的里程數(shù)越少.如圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列說法中,正確的是( )
A. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
B. 以低于80 km/h的速度行駛時,行駛相同路程,三輛車中,乙車消耗汽油最少
C. 以高于80 km/h的速度行駛時,行駛相同路程,丙車比乙車省油
D. 以80 km/h的速度行駛時,行駛100公里,甲車消耗的汽油量約為10升
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時魚竿可收縮,完全收縮后,魚竿長度即為第1節(jié)套管的長度(如圖1所示):使用時,可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長50cm,第2節(jié)套管長46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時,為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長度的重疊,設(shè)其長度為xcm.
(1)請直接寫出第5節(jié)套管的長度;
(2)當這根魚竿完全拉伸時,其長度為311cm,求x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com