【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點A(3,0),二次函數(shù)圖象的對稱軸是x=1,下列結(jié)論正確的是
A.b2>4acB.ac>0C.a–b+c>0D.4a+2b+c<0
【答案】A
【解析】
略
根據(jù)拋物線與x軸有兩個交點有b2﹣4ac>0可對A進行判斷;由拋物線開口向下得a<0,由拋物線與y軸的交點在x軸上方得c>0,則可對B進行判斷;根據(jù)拋物線的對稱性得到拋物線與x軸的另一個交點為(﹣1,0),所以a﹣b+c=0,則可對C選項進行判斷;由于x=2時,函數(shù)值大于0,則有4a+2b+c>0,于是可對D選項進行判斷.
∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,即b2>4ac,所以A選項正確; ∵拋物線開口向下,
∴a<0, ∵拋物線與y軸的交點在x軸上方, ∴c>0, ∴ac<0,所以B選項錯誤;
∵拋物線過點A(3,0),二次函數(shù)圖象的對稱軸是x=1, ∴拋物線與x軸的另一個交點為(﹣1,0),
∴a﹣b+c=0,所以C選項錯誤; ∵當x=2時,y>0, ∴4a+2b+c>0,所以D選項錯誤.
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景
在綜合實踐課上,同學(xué)們以圖形的平移與旋轉(zhuǎn)為主題開展數(shù)學(xué)活動,如圖(1),先將一張等邊三角形紙片對折后剪開,得到兩個互相重合的△ABD和△EFD,點E與點A重合,點B與點F重合,然后將△EFD繞點D順時針旋轉(zhuǎn),使點F落在邊AB上,如圖(2),連接EC.
操作發(fā)現(xiàn)
(1)判斷四邊形BFEC的形狀,并說明理由;
實踐探究
(2)聰聰提出疑問:若等邊三角形的邊長為8,能否將圖(2)中的△EFD沿BC所在的直線平移a個單位長度(規(guī)定沿射線BC方向為正),得到△,連接,,使得得到的四邊形為菱形,請你幫聰聰解決這個問題,若能,請求出a的值;若不能,請說明理由。
(3)老師提出問題:請參照聰聰?shù)乃悸罚舻冗吶切蔚倪呴L為8,將圖(2)中的△EFD在平面內(nèi)進行一次平移,得到△,畫出平移后構(gòu)造出的新圖形,標明字母,說明平移及構(gòu)圖方法,寫出你發(fā)現(xiàn)的一個結(jié)論,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于A(﹣1,0)、B(3,0)兩點,與y軸交于點C(0,3),點D在拋物線上且橫坐標為2.
(1)求這條拋物線的表達式;
(2)將該拋物線向下平移,使得新拋物線的頂點G在x軸上.原拋物線上一點M平移后的對應(yīng)點為點N,如果△AMN是以MN為底邊的等腰三角形,求點N的坐標;
(3)若點P為拋物線上第一象限內(nèi)的動點,過點B作BE⊥OP,垂足為E,點Q為y軸上的一個動點,連接QE、QD,試求QE+QD的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 某射擊隊教練為了了解隊員訓(xùn)練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如表:
命中環(huán)數(shù) | 6 | 7 | 8 | 9 | 10 |
甲命中相應(yīng)環(huán)數(shù)的次數(shù) | 0 | 1 | 3 | 1 | 0 |
乙命中相應(yīng)環(huán)數(shù)的次數(shù) | 2 | 0 | 0 | 2 | 1 |
關(guān)于以上數(shù)據(jù),下列說法錯誤的是( 。
A.甲命中環(huán)數(shù)的中位數(shù)是8環(huán)
B.乙命中環(huán)數(shù)的眾數(shù)是9環(huán)
C.甲的平均數(shù)和乙的平均數(shù)相等
D.甲的方差小于乙的方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間甲乙兩商場搞促銷活動,甲商場的方案是:在一個不透明的箱子里放4個完全相同的小球,球上分別標“0元”“20元”“30元”“50元”,顧客每消費滿300元就可從箱子里不放回地摸出2個球,根據(jù)兩個小球所標金額之和可獲相應(yīng)價格的禮品;乙商場的方案是:在一個不透明的箱子里放2個完全相同的小球,球上分別標“5元”“30元”,顧客每消費滿100元,就可從箱子里有放回地摸出1個球,根據(jù)小球所標金額可獲相應(yīng)價格的禮品.某顧客準備消費300元.
(1)請用畫樹狀圖或列表法,求出該顧客在甲商場獲得禮品的總價值不低于50元的概率;
(2)判斷該顧客去哪個商場消費使獲得禮品的總價值不低于50元機會更大?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點B(6,0)的直線AB與直線OA相交于點A(4,2),動點M在線段OA和射線AC上運動.
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)是否存在點M,使△OMC的面積是△OAC的面積的?若存在求出此時點M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家為了推進教育均衡發(fā)展,在鄉(xiāng)鎮(zhèn)中心學(xué)校開設(shè)的體育選修課有A﹣籃球,B﹣足球,C﹣排球,D﹣羽毛球,E﹣乒乓球,學(xué)生可根據(jù)自己的愛好選修一門,學(xué)校張老師對某班全班同學(xué)的選課情況進行調(diào)查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖(如圖):
(1)求出該班的總?cè)藬?shù),并補全條形統(tǒng)計圖;
(2)求出“足球”在扇形統(tǒng)計圖中的圓心角是多少度;
(3)若該班所在的年級共有1200人,請估計選籃球的學(xué)生有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如今很多初中生喜歡購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此某班數(shù)學(xué)興趣小組對本班同學(xué)一天飲用飲品的情況進行了調(diào)查,大致可分為四種:A:白開水,B:瓶裝礦泉水,C:碳酸飲料,D:非碳酸飲料,根據(jù)統(tǒng)計結(jié)果繪制如下兩個不完整的統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)這個班級有 名同學(xué);并補全條形統(tǒng)計圖;
(2)若該班同學(xué)每人每天只飲用一種飲品(每種僅限一瓶,價格如表),則該班同學(xué)每天用于飲品的人均花費是多少元?
(3)在飲用白開水的同學(xué)中有4名班委干部,為了養(yǎng)成良好的生活習慣,班主任決定在這4名班委干部(其中有兩位班長記為A,B,其余兩位記為C,D)中隨機抽取2名作為良好習慣監(jiān)督員,請用列表法或畫樹狀圖的方法,求出恰好抽到2名班長的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BA延長線上一點,E是AC的中點.
(1)利用尺規(guī)作出∠DAC的平分線AM,連接BE并延長交AM于點F,(要求在圖中標明相應(yīng)字母,保留作圖痕跡,不寫作法);
(2)試判斷AF與BC有怎樣的位置關(guān)系與數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com