【題目】已知拋物線與軸交于兩點(點在點的左邊),與軸交于點,頂點為.
(1)如圖1,請求出三點的坐標;
(2)點為軸下方拋物線上一動點.
①如圖2,若時,拋物線的對稱軸交軸于點,直線交軸于點,直線交對稱軸于點,求的值;
②如圖3,若時,點在軸上方的拋物線上運動,連接交軸于點,且滿足當線段運動時,的度數(shù)大小發(fā)生變化嗎?若不變,請求出的值若變化,請說明理由.
【答案】(1);(2)①2; ②=4,理由見解析
【解析】
(1)令y=0,代入函數(shù)解析式,令x=0,代入函數(shù)解析式,即可求解;
(2)①過點作軸于點,設(shè)點,由,,得,從而得,進而即可得到結(jié)論;②設(shè)點,由題意得:,過點作軸于點,作軸于點,過點作,交的延長線于點,由,得,從而得,結(jié)合正切三角函數(shù)的定義,即可得到結(jié)論.
(1)令y=0代入,得,
解得:,
令x=0代入,得:y=3k,
∴;
(2)①過點作軸于點,如圖1,則,,
∵當時,,對稱軸為:直線x=2,
∴設(shè)點,
,
,
,
;
②不會變化,理由如下:
∵當時,,
∴設(shè)點,
∵當時,不能滿足,
,
如圖2,過點作軸于點,作軸于點,過點作,交的延長線于點.
∵,∠FHB=∠ENB=90°,
,
,
,
∵EM∥x軸,
∴∠FGO=∠FEM,
∴點和點在拋物線上運動時,的值不會變化.
科目:初中數(shù)學 來源: 題型:
【題目】已知AB=AC.如圖,D、E為∠BAC的平分線上的兩點,連接BD、CD、BE、CE;如圖4, D、E、F為∠BAC的平分線上的三點,連接BD、CD、BE、CE、BF、CF;如圖5, D、E、F、G為∠BAC的平分線上的四點,連接BD、CD、BE、CE、BF、CF、BG、CG……依此規(guī)律,第17個圖形中有全等三角形的對數(shù)是( 。
A.17B.54C.153D.171
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=a-4ax與x軸交于A,B兩點(A在B的左側(cè)).
(1)求點A,B的坐標;
(2)已知點C(2,1),P(1,-a),點Q在直線PC上,且Q點的橫坐標為4.
①求Q點的縱坐標(用含a的式子表示);
②若拋物線與線段PQ恰有一個公共點,結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年“五一”期間,小明一家到某農(nóng)莊采摘,在村口A處,小明接到農(nóng)莊發(fā)來的定位,發(fā)現(xiàn)農(nóng)莊C在自己的北偏東45°方向,于是沿河邊筆直綠道l步行200米到達B處,此時定位顯示農(nóng)莊C在自己的北偏東30°方向,電話聯(lián)系,得知農(nóng)莊主已到農(nóng)莊C正南方的橋頭D處等待,請問還要沿綠道直走多少米才能到達橋頭D處.(精確到1米,參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等邊的邊長是,以邊上的高,為邊作等邊三角形,得到第一個等邊;再以等邊的邊上的高,為邊作等邊三角形,得到第二個等邊,再以等邊的邊上的高為邊作等邊三角形,得到第三個等邊: ....記的面積為的面積為的面積為,如此下去,則 ___________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關(guān)系式;
(2)當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?
(3)為穩(wěn)定物價,有關(guān)管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲,乙,丙三人做一個抽牌游戲,三張紙牌上分別寫有個數(shù)字0,x,y(x,y均為正整數(shù),且x<y),每人抽一張紙牌,紙牌上的數(shù)字就是這一輪的得分.經(jīng)過若干輪后(至少四輪),甲的總得分為20,乙的總得分為10,丙的總得分為9.則甲抽到x的次數(shù)最多為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O為短形ABCD的外接圓,其半徑為3.
(1)用尺規(guī)作圖作出∠ABC的平分線,并標出它與劣弧AD的交點E(保留作圖痕跡,不寫作法);
(2)若(1)中的點E到弦AD的距離為2,求弦AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=BC,∠ABC=90°,D為AC中點,點P是線段AD上的一點,點P與點A、點D不重合),連接BP.將△ABP繞點P按順時針方向旋轉(zhuǎn)α角(0°<α<180°),得到△A1B1P,連接A1B1、BB1
(1)如圖①,當0°<α<90°,在α角變化過程中,請證明∠PAA1=∠PBB1.
(2)如圖②,直線AA1與直線PB、直線BB1分別交于點E,F.設(shè)∠ABP=β,當90°<α<180°時,在α角變化過程中,是否存在△BEF與△AEP全等?若存在,求出α與β之間的數(shù)量關(guān)系;若不存在,請說明理由;
(3)如圖③,當α=90°時,點E、F與點B重合.直線A1B與直線PB相交于點M,直線BB′與AC相交于點Q.若AB=,設(shè)AP=x,CQ=y,求y關(guān)于x的函數(shù)關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com