已知,如圖二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸交于點(diǎn)C(0,4)與x軸交于點(diǎn)A、B,點(diǎn)B(4,0),拋物線的對(duì)稱軸為x=1.直線AD交拋物線于點(diǎn)D(2,m),
(1)求二次函數(shù)的解析式并寫出D點(diǎn)坐標(biāo);
(2)點(diǎn)Q是線段AB上的一動(dòng)點(diǎn),過點(diǎn)Q作QE∥AD交BD于E,連結(jié)DQ,當(dāng)△DQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(3)拋物線與y軸交于點(diǎn)C,直線AD與y軸交于點(diǎn)F,點(diǎn)M為拋物線對(duì)稱軸上的動(dòng)點(diǎn),點(diǎn)N在x軸上,當(dāng)四邊形CMNF周長(zhǎng)取最小值時(shí),求出滿足條件的點(diǎn)M和點(diǎn)N的坐標(biāo).

(1)點(diǎn)D的坐標(biāo)為(2,4).
(2)當(dāng)t=1時(shí),SDQE有最大值,所以此時(shí)Q點(diǎn)的坐標(biāo)為(1,0);
(3)滿足條件的點(diǎn)N的坐標(biāo)為N(,0),點(diǎn)M的坐標(biāo)為M(1,1).

解析試題分析:(1)根據(jù)點(diǎn)C(0,4),點(diǎn)B(4,0),拋物線的對(duì)稱軸為x=1可得關(guān)于a,b,c的方程組,解方程求得a,b,c的值,從而得到二次函數(shù)的解析式,再將點(diǎn)D(2,m)代入二次函數(shù)的解析式,得到關(guān)于m的方程,求得m的值,從而求解;
(2)先求得A,B點(diǎn)的坐標(biāo),過點(diǎn)E作EG⊥QB,根據(jù)相似三角形的判定和性質(zhì)可得EG= ,由于SDQE=SBDQ-SBEQ,配方后即可得到SDQE有最大值時(shí)Q點(diǎn)的坐標(biāo);
(3)根據(jù)待定系數(shù)法得到直線AD的解析式為:y=x+2,過點(diǎn)F作關(guān)于x軸的對(duì)稱點(diǎn)F′,即F′(0,-2),再連接DF′交對(duì)稱軸于M′,x軸于N′,由條件可知,點(diǎn)C,D是關(guān)于對(duì)稱軸x=1對(duì)稱,則CF+F′N+M′N′+M′C=CF+DF′=2+2,得到四邊形CFNM的最短周長(zhǎng)為:2+2時(shí)直線DF′的解析式為:y=3x-2,長(zhǎng)而得到滿足條件的點(diǎn)M和點(diǎn)N的坐標(biāo).
(1)由題意有:,
解得:
所以,二次函數(shù)的解析式為:y=-x2+x+4,
∵點(diǎn)D(2,m)在拋物線上,即m=-×22+2+4=4,
所以點(diǎn)D的坐標(biāo)為(2,4).
(2)令y=0,即-x2+x+4=0,解得:x1=4,x2=-2,
∴A,B點(diǎn)的坐標(biāo)分別是(-2,0),(4,0),
如圖1,過點(diǎn)E作EG⊥QB,垂足為G,設(shè)Q點(diǎn)坐標(biāo)為(t,0),
∵QE∥AD,
∴△BEQ與△BDA相似,
 ,即
∴EG=,
∴SBEQ=×(4-t)×,
∴SDQE=SBDQ-SBEQ
=×(4-t)×4-SBEQ
=2(4-t)-(4-t)2
=-t2+t+
=-(t-1)2+3,
∴當(dāng)t=1時(shí),SDQE有最大值,所以此時(shí)Q點(diǎn)的坐標(biāo)為(1,0);

(3)由A(-2,0),D(2,4),可求得直線AD的解析式為:y=x+2,即點(diǎn)F的坐標(biāo)為:F(0,2),
如圖2,過點(diǎn)F作關(guān)于x軸的對(duì)稱點(diǎn)F′,即F′(0,-2),再連接DF′交對(duì)稱軸于M′,x軸于N′,由條件可知,點(diǎn)C,D是關(guān)于對(duì)稱軸x=1對(duì)稱,
則CF+F′N+M′N′+M′C=CF+DF′=2+2,
則四邊形CFNM的周長(zhǎng)=CF+FN+NM+MC≥CF+FN′+M′N′+M′C,
即四邊形CFNM的最短周長(zhǎng)為:2+2
此時(shí)直線DF′的解析式為:y=3x-2,
所以存在點(diǎn)N的坐標(biāo)為N(,0),點(diǎn)M的坐標(biāo)為M(1,1).

考點(diǎn):二次函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,二次函數(shù))的圖象與軸正半軸交于A點(diǎn).
(1)求證:該二次函數(shù)的圖象與x軸必有兩個(gè)交點(diǎn);
(2)設(shè)該二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)中右側(cè)的交點(diǎn)為點(diǎn)B,若∠ABO=45°,將直線AB向下平移2個(gè)單位得到直線l,求直線l的解析式;
(3)在(2)的條件下,設(shè)M(p,q)為二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)都在直線l的下方,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,拋物線經(jīng)過A(-1,0),C(3,-2)兩點(diǎn),與軸交于點(diǎn)D,與軸交于另一點(diǎn)B.
(1)求此拋物線的解析式;
(2)若直線)將四邊形ABCD面積二等分,求的值;
(3)如圖2,過點(diǎn)E(1,1)作EF⊥軸于點(diǎn)F,將△AEF繞平面內(nèi)某點(diǎn)P旋轉(zhuǎn)180°得△MNQ(點(diǎn)M、N、Q分別與點(diǎn)A、E、F對(duì)應(yīng)),使點(diǎn)M、N在拋物線上,求點(diǎn)N和點(diǎn)P的坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC =" 8" cm,BC =" 6" cm,EF =" 9" cm。
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2 cm/s的速度沿BA向點(diǎn)A勻速移動(dòng)。當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移。DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5)。解答下列問題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最?若存在,求出y的最小值;若不存在,說明理由。
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說明理由。(圖(3)供同學(xué)們做題使用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知二次函數(shù)的圖象與軸相交于點(diǎn),頂點(diǎn)為,點(diǎn)在這個(gè)二次函數(shù)圖象的對(duì)稱軸上.若四邊形是一個(gè)邊長(zhǎng)為2且有一個(gè)內(nèi)角為的菱形.求此二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線過點(diǎn),這條拋物線的對(duì)稱軸與x軸交于點(diǎn)C,點(diǎn)P為射線CB上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)D為此拋物線對(duì)稱軸上一點(diǎn),且?CPD=
(1)求拋物線的解析式;
(2)若點(diǎn)P的橫坐標(biāo)為m,△PCD的面積為S,求S與m之間的函數(shù)關(guān)系式;
(3)過點(diǎn)P作PE⊥DP,連接DE,F(xiàn)為DE的中點(diǎn),試求線段BF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)與x軸交于A(1,0)、B(3,0)兩點(diǎn);二次函數(shù)的頂點(diǎn)為P.
(1)請(qǐng)直接寫出:b=_______,c=___________;
(2)當(dāng)∠APB=90°,求實(shí)數(shù)k的值;
(3)若直線與拋物線L2交于E,F(xiàn)兩點(diǎn),問線段EF的長(zhǎng)度是否發(fā)生變化?如果不發(fā)生變化,請(qǐng)求出EF的長(zhǎng)度;如果發(fā)生變化,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-1,0), 點(diǎn)C(0,5),點(diǎn)D(1,8)在拋物線上,M為拋物線的頂點(diǎn).求

(1)拋物線的解析式;
(2)求△MCB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知△OAB的頂點(diǎn)A(-6,0),B(0,2),O是坐標(biāo)原點(diǎn), 將△OAB繞點(diǎn)O按順時(shí)針旋轉(zhuǎn)90°,得到△ODC.

(1)寫出C點(diǎn)的坐標(biāo)為          ;
(2)設(shè)過A,D,C三點(diǎn)的拋物線的解析式為,求其解析式?
(3)證明AB⊥BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案