【題目】如圖,正方形ABCD的邊長為8,E為BC上一定點,BE=6,F為AB上一動點,把△BEF沿EF折疊,點B落在點B′處,當△AFB′恰好為直角三角形時,B′D的長為?
【答案】或
【解析】
分兩種情況如圖1,當∠AB′F=90°時,此時A、B′、E三點共線,過點B′作B′M⊥AB,B′N⊥AD,由三角形的面積法則可求得B′M=2.4,再由勾股定理可求得B′N=3.2,在Rt△CB′N中,由勾股定理得,B′D=;如圖2,當∠AFB′=90°時,由題意可知此時四邊形EBFB′是正方形,AF=2,過點B′作B′N⊥AD,則四邊形AFB′N為矩形,在Rt△CB′N中,由勾股定理得,B′D=;
如圖1,當∠AB′F=90°時,此時A、B′、E三點共線,
∵∠B=90°,∴AE==10,
∵B′E=BE=6,∴AB′=4,
∵B′F=BF,AF+BF=AB=8,
在Rt△AB′F中,∠AB′F=90°,由勾股定理得,AF2=FB′2+AB′2,
∴AF=5,BF=3,
過點B′作B′M⊥AB,B′N⊥AD,由三角形的面積法則可求得B′M=2.4,再由勾股定理可求得B′N=3.2,
∴AN=B′M=2.4,∴DN=AD-AN=8-2.4=5.6,
在Rt△CB′N中,由勾股定理得,B′D= = ;
如圖2,當∠AFB′=90°時,由題意可知此時四邊形EBFB′是正方形,∴AF=2,
過點B′作B′N⊥AD,則四邊形AFB′N為矩形,∴AN=B′F=6,B′N=AF=2,∴DN=AD-AN=2,
在Rt△CB′N中,由勾股定理得,B′D= = ;
綜上,可得B′D的長為或.
科目:初中數(shù)學 來源: 題型:
【題目】某中學抽取了40名學生參加“平均每周課外閱讀時間”的調查,由調查結果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖.
組別 | 時間/小時 | 頻數(shù)/人數(shù) |
A組 | 2 | |
B組 | m | |
C組 | 10 | |
D組 | 12 | |
E組 | 7 | |
F組 | 4 |
頻數(shù)分布表
請根據(jù)圖表中的信息解答下列問題:
(1)求頻數(shù)分布表中m的值;
(2)求B組,C組在扇形統(tǒng)計圖中分別對應扇形的圓心角度數(shù),并補全扇形統(tǒng)計圖;
(3)已知F組的學生中,只有1名男生,其余都是女生,用列舉法求以下事件的概率:從F組中隨機選取2名學生,恰好都是女生。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解“哈啰單車”的使用情況,小月對部分用戶的騎行時間t(分)進行了隨機抽查,將獲得的數(shù)據(jù)分成四組(A:;B:;C:;D:),并繪制出如圖所示的兩幅不完整的統(tǒng)計圖.
(1)求D組所在扇形的圓心角的度數(shù),并補全條形統(tǒng)計圖;
(2)小月打算在C、D兩組中各隨機選一名用戶進行采訪,若這兩組中各有兩名女士,請用列表或畫樹狀圖的方法求出恰好選中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖表示的是某班部分同學衣服上口袋的數(shù)目.
①從圖中給出的信息得到學生衣服上口袋數(shù)目的中位數(shù)為 ,眾數(shù)為 .
②根據(jù)如圖信息,在給出的圖表中繪制頻數(shù)條形統(tǒng)計圖,由此估計該班學生衣服上口袋數(shù)目為的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時出發(fā),甲車勻速前往B地,到達B地立即以另一速度按原路勻速返回到A地;乙車勻速前往A地,設甲、乙兩車距A地的路程為y(千米),甲車行駛的時間為x(時),y與x之間的函數(shù)圖象如圖所示
(1)求甲車從A地到達B地的行駛時間;
(2)求甲車返回時y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)求乙車到達A地時甲車距A地的路程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(8分)某體育館計劃從一家體育用品商店一次性購買若干個氣排球和籃球(每個氣排球的價格都相同,每個籃球的價格都相同).經洽談,購買1個氣排球和2個籃球共需210元;購買2個氣排球和3個籃球共需340元.
(1)每個氣排球和每個籃球的價格各是多少元?
(2)該體育館決定從這家體育用品商店一次性購買氣排球和籃球共50個,總費用不超過3200元,且購買氣排球的個數(shù)少于30個,應選擇哪種購買方案可使總費用最低?最低費用是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某班甲、乙、丙三位同學最近5次數(shù)學成績及其所在班級相應平均分的折線統(tǒng)計圖,則下列判斷錯誤的是( ).
A. 甲的數(shù)學成績高于班級平均分,且成績比較穩(wěn)定
B. 乙的數(shù)學成績在班級平均分附近波動,且比丙好
C. 丙的數(shù)學成績低于班級平均分,但成績逐次提高
D. 就甲、乙、丙三個人而言,乙的數(shù)學成績最不穩(wěn)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】模具廠計劃生產面積為4,周長為m的矩形模具.對于m的取值范圍,小亮已經能用“代數(shù)”的方法解決,現(xiàn)在他又嘗試從“圖形”的角度進行探究,過程如下:
(1)建立函數(shù)模型
設矩形相鄰兩邊的長分別為x,y,由矩形的面積為4,得,即;由周長為m,得,即.滿足要求的應是兩個函數(shù)圖象在第 象限內交點的坐標.
(2)畫出函數(shù)圖象
函數(shù)的圖象如圖所示,而函數(shù)的圖象可由直線平移得到.請在同一直角坐標系中直接畫出直線.
(3)平移直線,觀察函數(shù)圖象
①當直線平移到與函數(shù)的圖象有唯一交點時,周長m的值為 ;
②在直線平移過程中,交點個數(shù)還有哪些情況?請寫出交點個數(shù)及對應的周長m的取值范圍.
(4)得出結論
若能生產出面積為4的矩形模具,則周長m的取值范圍為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com