【題目】如圖,點(diǎn)E是正方形ABCD的邊CD上一點(diǎn),以A為圓心,AB為半徑的弧與BE交于點(diǎn)F,則∠EFD=_____°.

【答案】45

【解析】

由四邊形ABCD為正方形及半徑相等得到AB=AF=AD,ABD=ADB=45°,利用等邊對(duì)等角得到兩對(duì)角相等,由四邊形ABFD的內(nèi)角和為360度,得到四個(gè)角之和為270,利用等量代換得到∠ABF+ADF=135°,進(jìn)而確定出∠1+2=45°,由∠EFD為三角形DEF的外角,利用外角性質(zhì)即可求出∠EFD的度數(shù).

∵正方形ABCD,AF,AB,AD為圓A半徑,

AB=AF=AD,ABD=ADB=45°,

∴∠ABF=AFB,AFD=ADF,

∵四邊形ABFD內(nèi)角和為360°,BAD=90°,

∴∠ABF+AFB+AFD+ADF=270°,

∴∠ABF+ADF=135°,

∵∠ABD=ADB=45°,即∠ABD+ADB=90°,

∴∠1+2=135°90°=45°,

∵∠EFD為△DEF的外角,

∴∠EFD=1+2=45°.

故答案為:45

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為a的正方形中挖掉一個(gè)邊長(zhǎng)為b的小正方形(a>b,把余下的部分剪拼成一個(gè)矩形(如圖),通過(guò)計(jì)算圖形(陰影部分)的面積,驗(yàn)證了一個(gè)等式,則這個(gè)等式是(

A.a2-b2=a+b)(a-b

B.a+b2=a2+2ab+b2

C.a-b2=a2-2ab+b2

D.a2-ab=aa-b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人用如圖的兩個(gè)分格均勻的轉(zhuǎn)盤(pán)、做游戲,游戲規(guī)則如下:分別轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,指針?lè)謩e指向一個(gè)數(shù)字(若指針停止在等份線(xiàn)上,那么重轉(zhuǎn)一次,直到指針指向某一數(shù)字為止).用所指的兩個(gè)數(shù)字相乘,如果積是奇數(shù),則甲獲勝;如果積是偶數(shù),則乙獲勝.請(qǐng)你解決下列問(wèn)題:

用列表格或畫(huà)樹(shù)狀圖的方法表示游戲所有可能出現(xiàn)的結(jié)果.

求甲、乙兩人獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會(huì),不過(guò)小明還有一個(gè)求助沒(méi)有用(使用求助可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).

(1)如果小明第一題不使用求助,那么小明答對(duì)第一道題的概率是  

(2)如果小明將求助留在第二題使用,請(qǐng)用樹(shù)狀圖或者列表來(lái)分析小明順利通關(guān)的概率.

(3)從概率的角度分析,你建議小明在第幾題使用求助.(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

在學(xué)習(xí)《圓》這一章時(shí),老師給同學(xué)們布置了一道尺規(guī)作圖題:

尺規(guī)作圖:過(guò)圓外一點(diǎn)作圓的切線(xiàn).

已知:P⊙O外一點(diǎn).

求作:經(jīng)過(guò)點(diǎn)P⊙O的切線(xiàn).

小敏的作法如下:如圖,

(1)連接OP,作線(xiàn)段OP的垂直平分線(xiàn)MNOP于點(diǎn)C.

(2)以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作圓,交⊙OA,B兩點(diǎn).

(3)作直線(xiàn)PA,PB.

老師認(rèn)為小敏的作法正確.

請(qǐng)回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是   ;由此可證明直線(xiàn)PA,PB都是⊙O的切線(xiàn),其依據(jù)是   .請(qǐng)寫(xiě)出證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:關(guān)于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數(shù)).

(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;

(2)若方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y=kx+bk≠0)與拋物線(xiàn)y=ax2a≠0)交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)是-2,點(diǎn)B的橫坐標(biāo)是3,則以下結(jié)論:

拋物線(xiàn)y=ax2a≠0)的圖象的頂點(diǎn)一定是原點(diǎn);

②x0時(shí),直線(xiàn)y=kx+bk≠0)與拋物線(xiàn)y=ax2a≠0)的函數(shù)值都隨著x的增大而增大;

③AB的長(zhǎng)度可以等于5;

④△OAB有可能成為等邊三角形;

當(dāng)-3x2時(shí),ax2+kxb,

其中正確的結(jié)論是( )

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),正比例函數(shù)的圖像與反比例函數(shù)的圖像都經(jīng)過(guò)點(diǎn)A2,m).

(1)求反比例函數(shù)的解析式;

(2)點(diǎn)B軸的上,且OA=BA,反比例函數(shù)圖像上有一點(diǎn)C,且∠ABC=90°,求點(diǎn)C坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,直徑,半徑,點(diǎn)上,且點(diǎn)與點(diǎn)在直徑的兩側(cè),連結(jié),.若,則的度數(shù)是________

查看答案和解析>>

同步練習(xí)冊(cè)答案