【題目】已知:如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,點(diǎn)A,C的坐標(biāo)分別為A(﹣3,0),C(1,0),BC=AC.
(1)在x軸上找一點(diǎn)D,連接DB,使得△ADB與△ABC相似(不包括全等),并求點(diǎn)D的坐標(biāo);
(2)在(1)的條件下,如P,Q分別是AB和AD上的動(dòng)點(diǎn),連接PQ,設(shè)AP=DQ=m,問是否存在這樣的m,使得△APQ與△ADB相似?如存在,請(qǐng)求出m的值;如不存在,請(qǐng)說明理由.
【答案】(1)(,0);(2)存在,當(dāng)m=或時(shí),△APQ與△ADB相似,理由見解析
【解析】
(1)如圖1,過點(diǎn)B作BD⊥AB,交x軸于點(diǎn)D,可證△ABC∽△ADB,可得∠ABC=∠ADB,可證△ABC∽△BDC,可得,可求CD的長(zhǎng),即可求點(diǎn)D坐標(biāo);
(2)分兩種情況討論,由相似三角形的性質(zhì)可求解.
(1)如圖1,過點(diǎn)B作BD⊥AB,交x軸于點(diǎn)D,
∵∠A=∠A,∠ACB=∠ABD=90°,
∴△ABC∽△ADB,
∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,
∴△ABC∽△BDC,
∴
∵A(﹣3,0),C(1,0),
∴AC=4,
∵BC=AC.
∴BC=3,
∴AB===5,
∵,
∴,
∴CD=,
∴AD=AC+CD=4+=,
∴OD=AD﹣AO=,
∴點(diǎn)D的坐標(biāo)為:(,0);
(2)如圖2,當(dāng)∠APC=∠ABD=90°時(shí),
∵∠APC=∠ABD=90°,∠BAD=∠PAQ,
∴△APQ∽△ABD,
∴,
∴
∴m=,
如圖3,當(dāng)∠AQP=∠ABD=90°時(shí),
∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,
∴△APQ∽△ADB,
∴,
∴
∴m=;
綜上所述:當(dāng)m=或時(shí),△APQ與△ADB相似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在單位長(zhǎng)度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點(diǎn)A、B、C.
(1)請(qǐng)完成如下操作:
①以點(diǎn)O為原點(diǎn)、豎直和水平方向?yàn)檩S、網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;
②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連結(jié)AD、CD
(2)請(qǐng)?jiān)?/span>(1)的基礎(chǔ)上,完成下列填空:
①寫出點(diǎn)的坐標(biāo):C______、D______.
②⊙D的半徑=______(結(jié)果保留根號(hào))
③求出弧AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】順次連接對(duì)角線相等的四邊形各邊中點(diǎn),所得四邊形是( )
A. 矩形 B. 平行四邊形 C. 菱形 D. 任意四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y1=的圖象與一次函數(shù)y2=ax+b的圖象相交于點(diǎn)A(1,4)和B(﹣2,n).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)請(qǐng)根據(jù)圖象直接寫出y1<y2時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果一個(gè)數(shù)的平方等于,記為,這個(gè)數(shù)叫做虛數(shù)單位。那么和我們所學(xué)的實(shí)數(shù)對(duì)應(yīng)起來(lái)就叫做復(fù)數(shù),表示為(為實(shí)數(shù)),叫這個(gè)復(fù)數(shù)的實(shí)部, 叫做這個(gè)復(fù)數(shù)的虛部,它的加,減,乘法運(yùn)算與整式的加,減,乘法運(yùn)算類似。
例如計(jì)算:
(1)填空: =_________, =____________.
(2)填空:①_________; ②_________ 。
(3)若兩個(gè)復(fù)數(shù)相等,則它們的實(shí)部和虛部必須分別相等,完成下列問題:已知, ,( 為實(shí)數(shù)),求的值。
(4)試一試:請(qǐng)利用以前學(xué)習(xí)的有關(guān)知識(shí)將化簡(jiǎn)成的形式。
(5)解方程:x2 - 2x +4 = 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線相交于O.點(diǎn)M,N分別是邊BC,CD上的動(dòng)點(diǎn)(不與點(diǎn)B,C,D重合),AM,AN分別交BD于E,F兩點(diǎn),且∠MAN=45°,則下列結(jié)論:①MN=BM+DN;②△AEF∽△BEM;③;④△FMC是等腰三角形.其中正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(4,4),點(diǎn)C的坐標(biāo)為(4,0),點(diǎn)D是x軸上(在點(diǎn)O右側(cè))任意一點(diǎn),以AD為邊向右側(cè)作正方形ADEF,連接BF,設(shè)點(diǎn)D的坐標(biāo)為(t,0)處.
(1)求證:△AOD≌△ABF;
(2)求點(diǎn)E的坐標(biāo)(用含有t的代數(shù)式來(lái)表示);
(3)當(dāng)△DBE是等腰三角形時(shí),請(qǐng)直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為6,點(diǎn)是邊的中點(diǎn),連接與對(duì)角線交于點(diǎn),連接并延長(zhǎng),交于點(diǎn),連接交于點(diǎn),連接。以下結(jié)論:①;②;③;④。其中正確的結(jié)論是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為的直徑,為上一點(diǎn),和過點(diǎn)的切線互相垂直,垂足為,交于點(diǎn).
(1)求證:平分.
(2)連接,若,,求出的直徑的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com