【題目】已知:如圖,在平面直角坐標(biāo)系中,ABC是直角三角形,∠ACB90°,點(diǎn)A,C的坐標(biāo)分別為A(﹣30),C1,0),BCAC

1)在x軸上找一點(diǎn)D,連接DB,使得ADBABC相似(不包括全等),并求點(diǎn)D的坐標(biāo);

2)在(1)的條件下,如P,Q分別是ABAD上的動(dòng)點(diǎn),連接PQ,設(shè)APDQm,問是否存在這樣的m,使得APQADB相似?如存在,請(qǐng)求出m的值;如不存在,請(qǐng)說明理由.

【答案】(1)(,0);(2)存在,當(dāng)m時(shí),APQADB相似,理由見解析

【解析】

1)如圖1,過點(diǎn)BBDAB,交x軸于點(diǎn)D,可證ABC∽△ADB,可得ABCADB,可證ABC∽△BDC,可得,可求CD的長(zhǎng),即可求點(diǎn)D坐標(biāo);

2)分兩種情況討論,由相似三角形的性質(zhì)可求解.

1)如圖1,過點(diǎn)BBDAB,交x軸于點(diǎn)D,

∵∠A=∠A,∠ACB=∠ABD90°

∴△ABC∽△ADB,

∴∠ABC=∠ADB,且∠ACB=∠BCD90°,

∴△ABC∽△BDC,

A(﹣30),C1,0),

AC4,

BCAC

BC3

AB5,

,

,

CD,

ADAC+CD4+

ODADAO,

∴點(diǎn)D的坐標(biāo)為:(,0);

2)如圖2,當(dāng)∠APC=∠ABD90°時(shí),

∵∠APC=∠ABD90°,∠BAD=∠PAQ,

∴△APQ∽△ABD,

m,

如圖3,當(dāng)∠AQP=∠ABD90°時(shí),

∵∠AQP=∠ABD90°,∠PAQ=∠BAD,

∴△APQ∽△ADB

,

m

綜上所述:當(dāng)m時(shí),APQADB相似.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在單位長(zhǎng)度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點(diǎn)A、BC

(1)請(qǐng)完成如下操作:

①以點(diǎn)O為原點(diǎn)、豎直和水平方向?yàn)檩S、網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;

②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連結(jié)AD、CD

(2)請(qǐng)?jiān)?/span>(1)的基礎(chǔ)上,完成下列填空:

①寫出點(diǎn)的坐標(biāo):C______、D______

②⊙D的半徑=______(結(jié)果保留根號(hào))

③求出弧AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】順次連接對(duì)角線相等的四邊形各邊中點(diǎn),所得四邊形是( )

A. 矩形 B. 平行四邊形 C. 菱形 D. 任意四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y1的圖象與一次函數(shù)y2ax+b的圖象相交于點(diǎn)A14)和B(﹣2,n).

1)求反比例函數(shù)與一次函數(shù)的解析式;

2)請(qǐng)根據(jù)圖象直接寫出y1y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果一個(gè)數(shù)的平方等于,記為,這個(gè)數(shù)叫做虛數(shù)單位。那么和我們所學(xué)的實(shí)數(shù)對(duì)應(yīng)起來(lái)就叫做復(fù)數(shù),表示為為實(shí)數(shù)),叫這個(gè)復(fù)數(shù)的實(shí)部, 叫做這個(gè)復(fù)數(shù)的虛部,它的加,減,乘法運(yùn)算與整式的加,減,乘法運(yùn)算類似。

例如計(jì)算:

1填空: =_________, =____________.

2填空:①_________ _________ 。

3若兩個(gè)復(fù)數(shù)相等,則它們的實(shí)部和虛部必須分別相等,完成下列問題:已知, ,( 為實(shí)數(shù)),求的值。

4)試一試:請(qǐng)利用以前學(xué)習(xí)的有關(guān)知識(shí)將化簡(jiǎn)成的形式。

5)解方程:x2 - 2x +4 = 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線相交于O.點(diǎn)M,N分別是邊BC,CD上的動(dòng)點(diǎn)(不與點(diǎn)B,C,D重合),AM,AN分別交BDE,F兩點(diǎn),且∠MAN=45°,則下列結(jié)論:MN=BM+DN;②△AEF∽△BEM;;④△FMC是等腰三角形.其中正確的有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(4,4),點(diǎn)C的坐標(biāo)為(4,0),點(diǎn)Dx軸上(在點(diǎn)O右側(cè))任意一點(diǎn),以AD為邊向右側(cè)作正方形ADEF,連接BF,設(shè)點(diǎn)D的坐標(biāo)為(t,0).

(1)求證:AOD≌△ABF;

(2)求點(diǎn)E的坐標(biāo)(用含有t的代數(shù)式來(lái)表示);

(3)當(dāng)DBE是等腰三角形時(shí),請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為6,點(diǎn)邊的中點(diǎn),連接與對(duì)角線交于點(diǎn),連接并延長(zhǎng),交于點(diǎn),連接于點(diǎn),連接。以下結(jié)論:①;②;③;④。其中正確的結(jié)論是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,上一點(diǎn),和過點(diǎn)的切線互相垂直,垂足為,于點(diǎn)

1)求證:平分

2)連接,若,求出的直徑的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案