已知,如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,正方形A′B′C′D′的頂點(diǎn)A′與點(diǎn)O重合,A′B′交BC于點(diǎn)E,A′D′交CD于點(diǎn)F.
(1)求證:OE=OF;
(2)若正方形ABCD的邊長(zhǎng)為1,求兩個(gè)正方形重疊部分的面積;
(3)若正方形A′B′C′D′繞著點(diǎn)O旋轉(zhuǎn),EF的長(zhǎng)度何時(shí)最短?(直接寫答案).
分析:(1)由正方形的性質(zhì)可以得出△BOE≌△COF,由全等三角形的性質(zhì)就可以得出OE=OF;
(2)由全等可以得出S△BOE=S△COF,就可以得出S四邊形OECF=S△BOC,S△BOC的面積就可以得出結(jié)論;  (3)運(yùn)用勾股定理表示出EF的表達(dá)式,當(dāng)OE垂直于BC時(shí)可以求出EF 的最小值.
解答:(1)證明:∵正方形ABCD的對(duì)角線AC、BD交于點(diǎn)O
∴∠BOC=90°,∠OBC=∠OCD=∠OCF=45°,OB=OC,
∵正方形A'B'C'D'的A'B'交BC于點(diǎn)E,A'D'交CD于點(diǎn)F.
∴∠EOF=90°
∵∠BOE=∠EOF-∠EOC=90°-∠EOC
∠COF=∠BOC-∠EOC=90°-∠EOC
∴∠BOE=∠COF.
在△OBE和△OCF中,
∠BOE=∠COF
OB=OC
∠OBC=∠OCF
,
∴△BOE≌△COF(ASA).
∴OE=OF;

(2)解:∵△BOE≌△COF,
∴S△BOE=S△COF
∴S△EOC+S△COF=S△EOC+S△BOE,
即S四邊形OECF=S△BOC
∵S△BOC=
1
4
,
∴兩個(gè)正方形重疊部分的面積為
1
4
;

(3)解:連接EF,
∵∠EOF=90°,
∴EF2=OE2+OF2
∵OE=OF,
∴EF2=2OE2,
∴要使EF最小,則OE最小,
∴當(dāng)OE垂直于BC時(shí),OE最小=
1
2
,
∴EF2=
1
2
,
∴EF最小=
2
2
點(diǎn)評(píng):本題考查了正方形的性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,解答時(shí)證明三角形全等得出OE=OF是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,O正方形ABCD的中心,BE平分∠DBC,交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使CF=CE精英家教網(wǎng),連接DF,交BE的延長(zhǎng)線于點(diǎn)G,連接OG.
(1)求證:△BCE≌△DCF;
(2)OG與BF有什么數(shù)量關(guān)系?證明你的結(jié)論;
(3)若GE•GB=4-2
2
,求正方形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖在正方形OADC中,點(diǎn)C的坐標(biāo)為(0,4),點(diǎn)A的坐標(biāo)為(4,0),CD的延長(zhǎng)線交雙曲線y=
32
x
于點(diǎn)B.
(1)求直線AB的解析式;精英家教網(wǎng)
精英家教網(wǎng)
(2)G為x軸的負(fù)半軸上一點(diǎn)連接CG,過G作GE⊥CG交直線AB于E.求證CG=GE;
(3)在(2)的條件下,延長(zhǎng)DA交CE的延長(zhǎng)線于F,當(dāng)G在x的負(fù)半軸上運(yùn)動(dòng)的過程中,請(qǐng)問
OG+GF
DF
的值是否為定值,若是,請(qǐng)求出其值;若不是,請(qǐng)說明你的理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、已知,如圖:正方形ABCD,將Rt△EFG斜邊EG的中點(diǎn)與點(diǎn)A重合,直角頂點(diǎn)F落在正方形的AB邊上,Rt△EFG的兩直角邊分別交AB、AD邊于P、Q兩點(diǎn),(點(diǎn)P與點(diǎn)F重合),如圖所示:

(1)求證:EP2+GQ2=PQ2;
(2)若將Rt△EFG繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0°<α≤90°),兩直角邊分別交AB、AD邊于P、Q兩點(diǎn),如圖2所示:判斷四條線段EP、PF、FQ、QG之間是否存在什么確定的相等關(guān)系?若存在,證明你的結(jié)論.若不存在,請(qǐng)說明理由;
(3)若將Rt△EFG繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(90°<α<180°),兩直角邊分別交AB、AD兩邊延長(zhǎng)線于P、Q兩點(diǎn),并判斷四條線段EP、PF、FQ、QG之間存在何種確定的相等關(guān)系?按題意完善圖3,請(qǐng)直接寫出你的結(jié)論(不用證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,正方形ABCD的邊長(zhǎng)為2a,H是以BC為直徑的半圓O上一點(diǎn),過H與圓O相切的直線交AB精英家教網(wǎng)于E,交CD于F.
(1)當(dāng)點(diǎn)H在半圓上移動(dòng)時(shí),切線EF在AB、CD上的兩個(gè)交點(diǎn)也分別在AB、CD上移動(dòng)(E、A不重合,F(xiàn)、D不重合),試問:四邊形AEFD的周長(zhǎng)是否也在變化?證明你的結(jié)論;
(2)設(shè)△BOE的面積為S1,△COF的面積為S2,正方形ABCD的面積為S,且S1+S2=
1348
S,求BE與CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,正方形紙片ABCD的邊長(zhǎng)是4,點(diǎn)M、N分別在兩邊AB和CD上(其中點(diǎn)N不與點(diǎn)C重合),沿直線MN折疊該紙片,點(diǎn)B恰好落在AD邊上點(diǎn)E處.
(1)設(shè)AE=x,四邊形AMND的面積為 S,求 S關(guān)于x 的函數(shù)解析式,并指明該函數(shù)的定義域;
(2)當(dāng)AM為何值時(shí),四邊形AMND的面積最大?最大值是多少?
(3)點(diǎn)M能是AB邊上任意一點(diǎn)嗎?請(qǐng)求出AM的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案