已知拋物線的頂點(diǎn)為,與y軸的交點(diǎn)為求拋物線的解析式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
閱讀理解:對于任意正實(shí)數(shù)a、b,∵≥0, ∴≥0,
∴≥,只有當(dāng)a=b時(shí),等號成立.
結(jié)論:在≥(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)a=b時(shí),a+b有最小值.
根據(jù)上述內(nèi)容,填空:若m>0,只有當(dāng)m= 時(shí),有最小值,最小值為 .
探索應(yīng)用:如圖,已知,,為雙曲線
(x>0)上的任意一點(diǎn),過點(diǎn)作⊥x軸于點(diǎn),
⊥y軸于點(diǎn)D.求四邊形面積的最小值,并說明
此時(shí)四邊形的形狀.
實(shí)際應(yīng)用:已知某汽車的一次運(yùn)輸成本包含以下三個(gè)部分:一是固定費(fèi)用,共490元;二是燃油費(fèi),每千米為元;三是折舊費(fèi),它與路程的平方成正比,比例系數(shù)為.設(shè)該汽車一次運(yùn)輸?shù)穆烦虨?sub>千米,求當(dāng)為多少時(shí),該汽車平均每千米的運(yùn)輸成本最低?最低平均每千米的運(yùn)輸成本是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知二次函數(shù),當(dāng)取 ,(≠)時(shí),函數(shù)值相等,則當(dāng)取時(shí),函數(shù)值為( 。
A. B. C. D.c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某乒乓球館使用發(fā)球機(jī)進(jìn)行輔助訓(xùn)練,出球口在桌面中線端點(diǎn)A處的正上方,假設(shè)每次發(fā)出的乒乓球的運(yùn)動(dòng)路線固定不變,且落在中線上,在乒乓球運(yùn)行時(shí),設(shè)乒乓球與端點(diǎn)A的水平距離為(米),與桌面的高度為(米),運(yùn)行時(shí)間為(秒),經(jīng)多次測試后,得到如下部分?jǐn)?shù)據(jù):
(秒) | 0 | 0.16 | 0.2 | 0.4 | 0.6 | 0.64 | 0.8 | … |
(米) | 0 | 0.4 | 0.5 | 1 | 1.5 | 1.6 | 2 | … |
(米) | 0.25 | 0.378 | 0.4 | 0.45 | 0.4 | 0.378 | 0.25 | … |
(1)當(dāng)為何值時(shí),乒乓球達(dá)到最大高度?
(2)乒乓球落在桌面時(shí),與端點(diǎn)A的水平距離是多少?
(3)乒乓球落在桌面上彈起后,與滿足.
①用含的代數(shù)式表示;
②球網(wǎng)高度為0.14米,球桌長(1.4×2)米,若球彈起后,恰好有唯一的擊球點(diǎn),可以將球沿直線扣殺到點(diǎn)A,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下面是某同學(xué)對多項(xiàng)式進(jìn)行因式分解的過程.
解:設(shè)
原式
請你模仿以上方法對多項(xiàng)式進(jìn)行因式分解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com