【題目】如果三角形的兩個內(nèi)角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準(zhǔn)互余三角形”.
(1)若△ABC是“準(zhǔn)互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明△ABD是“準(zhǔn)互余三角形”.試問在邊BC上是否存在點E(異于點D),使得△ABE也是“準(zhǔn)互余三角形”?若存在,請求出BE的長;若不存在,請說明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準(zhǔn)互余三角形”,求對角線AC的長.
【答案】(1)15°;(2)BE=.(3)AC=20.
【解析】
(1)根據(jù)“準(zhǔn)互余三角形”的定義構(gòu)建方程即可解決問題;
(2)只要證明△CAE∽△CBA,可得CA2=CECB,由此即可解決問題;
(3)如圖②中,將△BCD沿BC翻折得到△BCF.只要證明△FCB∽△FAC,可得CF2=FBFA,設(shè)FB=x,則有:x(x+7)=122,推出x=9或﹣16(舍棄),再利用勾股定理求出AC即可;
(1)∵△ABC是“準(zhǔn)互余三角形”,∠C>90°,∠A=60°,
∴2∠B+∠A=60°,
解得,∠B=15°;
(2)如圖①中,
在Rt△ABC中,∵∠B+∠BAC=90°,∠BAC=2∠BAD,
∴∠B+2∠BAD=90°,
∴△ABD是“準(zhǔn)互余三角形”,
∵△ABE也是“準(zhǔn)互余三角形”,
∴只有2∠B+∠BAE=90°,
∵∠B+∠BAE+∠EAC=90°,
∴∠CAE=∠B,∵∠C=∠C=90°,
∴△CAE∽△CBA,可得CA2=CECB,
∴CE=,
∴BE=5﹣=.
(3)如圖②中,將△BCD沿BC翻折得到△BCF.
∴CF=CD=12,∠BCF=∠BCD,∠CBF=∠CBD,
∵∠ABD=2∠BCD,∠BCD+∠CBD=90°,
∴∠ABD+∠DBC+∠CBF=180°,
∴A、B、F共線,
∴∠A+∠ACF=90°
∴2∠ACB+∠CAB≠90°,
∴只有2∠BAC+∠ACB=90°,
∴∠FCB=∠FAC,∵∠F=∠F,
∴△FCB∽△FAC,
∴CF2=FBFA,設(shè)FB=x,
則有:x(x+7)=122,
∴x=9或﹣16(舍去),
∴AF=7+9=16,
在Rt△ACF中,AC=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,拋物線y=ax2﹣4ax+c與直線y=kx+1(k≠0)交于y軸上一點A和第一象限內(nèi)一點B,該拋物線頂點H的縱坐標(biāo)為5.
(1)求拋物線的解析式;
(2)連接AH、BH,拋物線的對稱軸與直線y=kx+1(k≠0)交于點K,若S△AHB=,求k的值;
(3)在(2)的條件下,點P是直線AB上方的拋物線上的一動點(如圖2),連接PA.當(dāng)∠PAB=45°時,
ⅰ)求點P的坐標(biāo);
ⅱ)已知點M在拋物線上,點N在x軸上,當(dāng)四邊形PBMN為平行四邊形時,請求出點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=6,BC=8.
(1)求對角線AC的長;
(2)點E是線段CD上的一點,把△ADE沿著直線AE折疊.點D恰好落在線段AC上,與點F重合,求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點,且AE=BC,過點A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點F.試判斷線段AB與DE的數(shù)量關(guān)系和位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=是反比例函數(shù).
(1)求m的值;
(2)指出該函數(shù)圖象所在的象限,在每個象限內(nèi),y隨x的增大如何變化?
(3)判斷點(,2)是否在這個函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知射線AP是△ABC的外角平分線,連結(jié)PB、PC.
(1)如圖1,若BP平分∠ABC,且∠ACB=30°,寫出∠APB的度數(shù).
(2)如圖1,若P與A不重合,求證:AB+AC<PB+PC.
(3)如圖2,若過點P作PM⊥BA,交BA延長線于M點,且∠BPC=∠BAC,求:的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,A為x軸負(fù)半軸上的點,B為y軸負(fù)半軸上的點.
(1)如圖①,以A點為頂點,AB為腰在第三象限作等腰Rt△ABC.若已知A(﹣2,0)B(0,﹣4),試求C點的坐標(biāo);
(2)如圖②,若點A的坐標(biāo)為(﹣2,0),點B的坐標(biāo)為(0,a),點D的縱坐標(biāo)為b,以B為頂點,BA為腰作等腰Rt△ABD,當(dāng)B點沿y軸負(fù)半軸向下運動且其他條件都不變時,求b﹣a的值;
(3)如圖③,E為x軸負(fù)半軸上的一點,且OB=OE,OF⊥EB于點F,以OB為邊在第四象限作等邊△OBM,連接EM交OF于點N,探究EM-ON與EN的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是高,AE,BF是角平分線,它們相交于點O,∠BAC=62°,∠C=70°,求∠EAD,∠BOE的度數(shù)分別是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com