如圖,PA與⊙O相切于點(diǎn)A,弦AB⊥OP,垂足為C,OP與⊙O相交于點(diǎn)D,已知OA=2,OP=4.
(1)求∠POA的度數(shù);
(2)求弦AB的長(zhǎng);
(3)過(guò)P、B兩點(diǎn)的直線是否是⊙O的切線,說(shuō)明理由.

【答案】分析:(1)根據(jù)PA與⊙O相切于A點(diǎn)可知,OA⊥AP,再依據(jù)銳角三角函數(shù)的定義即可求出;
(2)根據(jù)直角三角形中∠AOC=60°,OA=2可求出AC的長(zhǎng),再根據(jù)垂徑定理即可求出弦AB的長(zhǎng);
(3)通過(guò)全等三角形△OAB≌△OBP(SAS)的對(duì)應(yīng)角相等證得∠OAP=∠OBP=90°.所以過(guò)P、B兩點(diǎn)的直線是⊙O的切線.
解答:解:(1)∵PA與⊙O相切于A點(diǎn),
∴△OAP是直角三角形,
∵OA=2,OP=4,
∴cos∠POA==,
∴∠POA=60°.

(2)∵直角三角形中∠AOC=60°,OA=2,
∴AC=OA•sin60°=2×=
∵AB⊥OP,
∴AB=2AC=2;

(3)過(guò)P、B兩點(diǎn)的直線是⊙O的切線.理由如下:
如圖,連接OB、PB.
在△OAB和△OBP中,
,
∴△OAB≌△OBP(SAS),
∴∠OAP=∠OBP.
又∵PA與⊙O相切于點(diǎn)A,
∴∠OAP=90°,
∴∠OBP=90°.
又∵點(diǎn)B在⊙O上,
∴PB是⊙O的切線,即過(guò)P、B兩點(diǎn)的直線是⊙O的切線.
點(diǎn)評(píng):本題考查了圓的切線性質(zhì),及三角函數(shù)的定義及特殊角的三角函數(shù)值.此題通過(guò)作輔助線OB、PB證得PB是⊙O的切線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,PA與⊙O相切于A點(diǎn),弦AB⊥OP,垂足為C,OP與⊙O相交于D點(diǎn),已知OA=2,OP=4.
(1)求∠POA的度數(shù);
(2)計(jì)算弦AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,PA與⊙O相切,切點(diǎn)為A,PO交⊙O于點(diǎn)C,點(diǎn)B是優(yōu)弧CBA上一點(diǎn),若∠ABC=32°,則∠P的度數(shù)為
26°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鄭州模擬)如圖,PA與⊙O相切,切點(diǎn)為A,PO交⊙O于點(diǎn)C,點(diǎn)B是優(yōu)弧
CBA
上一點(diǎn),若∠ABC=31°,則∠P的度數(shù)為
28°
28°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA與⊙O相切于點(diǎn)A,PO的延長(zhǎng)線與⊙O交于點(diǎn)C,若⊙O的半徑為3,PA=4.弦AC的長(zhǎng)為
4
73
5
4
73
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA與⊙O相切于點(diǎn)A,弦AB⊥OP,垂足為C,OP與⊙O相交于點(diǎn)D,已知OA=2,OP=4.
(1)求∠POA的度數(shù);
(2)求弦AB的長(zhǎng);
(3)過(guò)P、B兩點(diǎn)的直線是否是⊙O的切線,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案