【題目】已知點P的坐標(biāo)(2a,3a+6),且點P到兩坐標(biāo)軸的距離相等,則點P的坐標(biāo)是____________.
【答案】(3,3)或(6,6)
【解析】
點P到兩坐標(biāo)軸的距離相等就是橫縱坐標(biāo)相等或互為相反數(shù),就可以得到方程求出a的值,從而求出點的坐標(biāo).
∵點P到兩坐標(biāo)軸的距離相等就是橫縱坐標(biāo)相等或互為相反數(shù),
∴分以下兩種情考慮:
①橫縱坐標(biāo)相等時,即當(dāng)2a=3a+6時,解得a=1,
∴點P的坐標(biāo)是(3,3);
②橫縱坐標(biāo)互為相反數(shù)時,即當(dāng)(2a)+(3a+6)=0時,解得a=4,
∴點P的坐標(biāo)是(6,6).
故答案為(3,3)或(6,6).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式,屬于二元一次方程的是______________;
① xy +2x -y =7 ;② 4x+1=x-y ;③+y=5 ;④ x=y ;⑤ x2-y2=2
⑥ 6x-2y ;⑦ x+y+z=1 ;⑧ y(y-1)=2y2-y2+x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ABD,點E在邊AB上,CE∥BD,連接DE.
求證:(1)∠CEB=∠CBE;
(2)四邊形BCED是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】貴州FAST望遠鏡是目前世界第一大單口徑射電望遠鏡,反射面總面積約250000m2 , 這個數(shù)據(jù)用科學(xué)記數(shù)法可表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC和等腰△ACD有一條公共邊AC,且頂角∠BAC和頂角∠CAD都是45°.將一塊三角板中用含45°角的頂點與A點重合,并將三角板繞A點按逆時針方向旋轉(zhuǎn).
(1)當(dāng)三角板旋轉(zhuǎn)到如圖1的位置時,三角板的兩邊與等腰三角形的兩底邊分別相交于M、N兩點,求證:AM=AN;
(2)當(dāng)三角板旋轉(zhuǎn)到如圖2的位置時,三角板的兩邊與等腰三角形兩底邊的延長線分別相交于M、N兩點,(1)的結(jié)論還成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀資料:我們把頂點在圓上,并且一邊和圓相交、另一邊和圓相切的角叫做弦切角,如下左圖∠ABC所示。
同學(xué)們研究發(fā)現(xiàn):P為圓上任意一點,當(dāng)弦AC經(jīng)過圓心O時,且AB切⊙O于點A,此時弦切角∠CAB=∠P(圖甲)
證明:∵AB切⊙O于點A, ∴∠CAB=90°, 又∵AC是直徑, ∴∠P=90° ∴∠CAB=∠P
問題拓展:若AC不經(jīng)過圓心O(如圖乙),該結(jié)論:弦切角∠CAB=∠P還成立嗎?
請說明理由。
知識運用:如圖,AD是△ABC中∠BAC的平分線,經(jīng)過點A的⊙O與BC切于點D,與AB、AC分別相交于E、F。 求證:EF∥BC。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖P為等邊△ABC外一點,AH垂直平分PC于點H,∠BAP的平分線交PC于點D
(1) 求證:DP=DB
(2) 求證:DA+DB=DC
(3) 若等邊△ABC邊長為,連接BH,當(dāng)△BDH為等邊三角形時,請直接寫出CP的長度為_________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com