【題目】如圖所示,以Rt△ABC的斜邊BC為一邊在△ABC的同側(cè)作正方形BCEF,設(shè)正方形的中心為O,連接AO,如果AB=4,AO=6,那么AC=_____.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三位運(yùn)動(dòng)員在相同條件下各射靶10次,每次射靶的成績(jī)?nèi)缦拢?/span>
甲:9,10,8,5,7,8,10,8,8,7;
乙:5,7,8,7,8,9,7,9,10,10;
丙:7,6,8,5,4,7,6,3,9,5.
(1)根據(jù)以上數(shù)據(jù)完成下表:
平均數(shù) | 中位數(shù) | 方差 | |
甲 | 8 | 8 | |
乙 | 8 | 8 | 2.2 |
丙 | 6 | 3 |
(2)依據(jù)表中數(shù)據(jù)分析,哪位運(yùn)動(dòng)員的成績(jī)最穩(wěn)定,并簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為某城市部分街道示意圖,四邊形ABCD為正方形,點(diǎn)G在對(duì)角線BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路線為B→A→G→E,小聰行走的路線為B→A→D→E→F.若小敏行走的路程為3100m,則小聰行走的路程為 m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)零件的形狀如圖所示,工人師傅按規(guī)定做得∠B=90°,
AB=3,BC=4,CD=12,AD=13,假如這是一塊鋼板,你能幫工人師傅計(jì)算一下這塊鋼板的面積嗎?
【答案】面積等于36
【解析】試題分析:利用勾股定理求AC,再利用勾股定理逆定理求∠ACB=90°,分別求的面積.
試題解析:
∠B=90°,AB=3,BC=4,AC=
=169,
所以∠ACD=90°,
.
所以面積是36.
【題型】解答題
【結(jié)束】
22
【題目】如圖,在所給正方形網(wǎng)格(每個(gè)小網(wǎng)格的邊長(zhǎng)是1)圖中完成下列各題.
(1)格點(diǎn)△ABC(頂點(diǎn)均在格點(diǎn)上)的面積=_________;
(2)畫出格點(diǎn)△ABC關(guān)于直線DE對(duì)稱的△A1B1C1;
(3)在DE上畫出點(diǎn)P,使PB+PC最小,并求出這個(gè)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,對(duì)角線AC,BD相交于O點(diǎn),點(diǎn)P是線段AD上一動(dòng)點(diǎn)(不與點(diǎn)D重合),PO的延長(zhǎng)線交BC于Q點(diǎn).
(1)求證:四邊形PBQD為平行四邊形.
(2)若AB=3cm,AD=4cm,P從點(diǎn)A出發(fā).以1cm/s的速度向點(diǎn)D勻速運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts,問(wèn):四邊形PBQD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在所給正方形網(wǎng)格(每個(gè)小網(wǎng)格的邊長(zhǎng)是1)圖中完成下列各題.
(1)格點(diǎn)△ABC(頂點(diǎn)均在格點(diǎn)上)的面積=_________;
(2)畫出格點(diǎn)△ABC關(guān)于直線DE對(duì)稱的△A1B1C1;
(3)在DE上畫出點(diǎn)P,使PB+PC最小,并求出這個(gè)最小值.
【答案】(1)面積等于5(2)圖形見(jiàn)解析(3)最小值是根號(hào)17
【解析】試題分析:(1)利用勾股定理求出三角形邊長(zhǎng),并證明是直角三角形求面積.(2)畫出A,B,C的對(duì)稱點(diǎn)A1,B2,C3,連接三角形.(3)利用對(duì)稱利用兩點(diǎn)之間直線最短求最小值.
試題解析:
(1)分別利用勾股定理求得AC=2,AB=,BC=, ,所以∠ACB=90°,面積等于=5.
(2)畫出A,B,C的對(duì)稱點(diǎn)A1,B2,C3,連接三角形.如下圖.
(3)作B點(diǎn)對(duì)稱B’,連接B’C交DE于P,B’P+PC=BP+CP,所以使PB+PC最小.
利用勾股定理B’C=,
所以最小值是根號(hào)17.
點(diǎn)睛:平面上最短路徑問(wèn)題
(1)歸于“兩點(diǎn)之間的連線中,線段最短”.凡屬于求“變動(dòng)的兩線段之和的最小值”時(shí),大都應(yīng)用這一模型.
(2)歸于“三角形兩邊之差小于第三邊”.凡屬于求“變動(dòng)的兩線段之差的最大值”時(shí),大都應(yīng)用這一模型.
(3)平面圖形中,直線同側(cè)兩點(diǎn)到直線上一點(diǎn)距離之和最短問(wèn)題.
【題型】解答題
【結(jié)束】
23
【題目】已知一次函數(shù)y=kx+7的圖像經(jīng)過(guò)點(diǎn)A(2,3).
(1)求k的值;
(2)判斷點(diǎn)B(-1,8),C(3,1)是否在這個(gè)函數(shù)的圖像上,并說(shuō)明理由;
(3)當(dāng)-3<x<-1時(shí),求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明同學(xué)在做作業(yè)時(shí),遇到這樣一道幾何題:
已知:如圖1,l1∥l2∥l3,點(diǎn)A、M、B分別在直線l1,l2,l3上,MC平分∠AMB,∠1=28°,∠2=70°.求:∠CMD的度數(shù).
小明想了許久沒(méi)有思路,就去請(qǐng)教好朋友小堅(jiān),小堅(jiān)給了他如圖2所示的提示:
請(qǐng)問(wèn)小堅(jiān)的提示中①是∠ ,④是∠ .
理由②是: ;
理由③是: ;
∠CMD的度數(shù)是 °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=9,AC=6,BC=12,點(diǎn)M在AB邊上,且AM=3,過(guò)點(diǎn)M作直線MN與AC邊交于點(diǎn)N,使截得的三角形與原三角形相似,則MN=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明:
已知:如圖,四邊形ABCD中,∠A=106°, ∠ABC=74°,BD⊥DC于點(diǎn)D, EF⊥DC于點(diǎn)F.
求證:∠1=∠2.
證明: ∵∠A=106°,∠ABC=74° (已知)
∴∠A+∠ABC=180°
( )
∴∠1=
∵BD⊥DC,EF⊥DC (已知)
∴∠BDF=∠EFC=90°( )
∴BD∥ ( )
∴∠2= ( )
(已證)
∴∠1=∠2 ( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com