17.△ABC是⊙O的內(nèi)接三角形,⊙O的直徑為10,∠ABC=60°,則AC的長(zhǎng)是( 。
A.5B.10C.5$\sqrt{2}$D.5$\sqrt{3}$

分析 首先連接AO,CO,由∠CBA=60°,根據(jù)在同圓或等圓中,同弧或等弧所對(duì)的圓周角等于這條弧所對(duì)的圓心角的一半,即可求得∠AOC的度數(shù),然后解直角三角形即可求得弦CA的長(zhǎng).

解答 解:連接AO,CO,過(guò)O作OE⊥AC于E,
∵∠CBA=60°,
∴∠COA=2∠CBA=120°,
∴∠ACO=30°,
∵⊙O的直徑為10,
∴OA=OC=5,
在Rt△COE中,CE=OCcos30°=$\frac{5\sqrt{3}}{2}$,
∴AC=2CE=5$\sqrt{3}$.
故選D.

點(diǎn)評(píng) 此題考查了圓周角定理與勾股定理.此題比較簡(jiǎn)單,準(zhǔn)確作出輔助線,掌握在同圓或等圓中,同弧或等弧所對(duì)的圓周角等于這條弧所對(duì)的圓心角的一半定理的應(yīng)用是解此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,點(diǎn)P是△ABC外的一點(diǎn),PD⊥AB于點(diǎn)D,PE⊥AC于點(diǎn)E,PF⊥BC于點(diǎn)F,連接PB,PC.若PD=PE=PF,∠BAC=70°,則∠BPC的度數(shù)為(  )
A.25°B.30°C.35°D.40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖,網(wǎng)格中小正方形的邊長(zhǎng)為1,點(diǎn)A、B為網(wǎng)格線的交點(diǎn),則AB的長(zhǎng)為(  )
A.3B.5C.7D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,直線y=-x+b與反比例函數(shù)y=$\frac{k}{x}$的圖象相交于A(1,4),B兩點(diǎn),延長(zhǎng)AO交反比例函數(shù)圖象于點(diǎn)C,連接OB.
(1)求k和b的值;
(2)直接寫出一次函數(shù)值小于反比例函數(shù)值的自變量x的取值范圍;
(3)在y軸上是否存在一點(diǎn)P,使S△PAC=$\frac{2}{5}$S△AOB?若存在請(qǐng)求出點(diǎn)P坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在△ABC中,∠C=90°,AB=5,BC=4,則cosA的值為(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖是從上面看一個(gè)由若干個(gè)相同的小正方體搭成的幾何體得到的形狀圖,其中小正方形內(nèi)的數(shù)字是該位置小正方體的個(gè)數(shù),請(qǐng)你畫出從正面和左面看這個(gè)幾何體得到的形狀圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在四邊形ABCD中,AB=DC,AD=BC,點(diǎn)E在BC上,點(diǎn)F在AD上,且AF=CE,連接EF,交BD于O.求證:OF=OE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖①,△ABC和△ECD都是等邊三角形,且點(diǎn)B、C、D在同一直線上,連接BE,AD.
(1)求證:BE=AD;
(2)如圖②,點(diǎn)P為線段BE上一點(diǎn),點(diǎn)F為線段AD上一點(diǎn),AF=BP,連接AP,CP,PF,若PF⊥AD,求∠BPC的度數(shù);
(3)如圖③,若點(diǎn)P在線段BE上,點(diǎn)Q在線段AD上,且BP=AQ,將線段CD沿AD翻折得到C′D,當(dāng)∠BPC等于多少度時(shí),△QCC′為等邊三角形?直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某菜農(nóng)搭建了一個(gè)橫截面為拋物線的大棚,尺寸如圖:
(1)如圖建立平面直角坐標(biāo)系,使拋物線對(duì)稱軸為y軸,求該拋物線的解析式;
(2)若需要開一個(gè)截面為矩形的門(如圖所示),已知門的高度為1.60米,那么門的寬度最大是多少米(不考慮材料厚度)?(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案