【題目】如圖,銳角三角形ABC中,直線L為BC的中垂線,直線M為ABC的角平分線,L與M相交于P點.若A=60°ACP=24°,則ABP的度數(shù)為何?( )

A.24° B.30° C.32° D.36°

【答案】C

【解析】

試題分析:根據(jù)角平分線的定義可得ABP=CBP,根據(jù)線段垂直平分線上的點到兩端點的距離相等可得BP=CP,再根據(jù)等邊對等角可得CBP=BCP,然后利用三角形的內(nèi)角和等于180°列出方程求解即可.

解:直線M為ABC的角平分線,

∴∠ABP=CBP

直線L為BC的中垂線,

BP=CP,

∴∠CBP=BCP

∴∠ABP=CBP=BCP,

ABC中,3ABP+A+ACP=180°,

即3ABP+60°+24°=180°

解得ABP=32°

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲2元,就會少售出20件玩具.

(1)不妨設(shè)該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤ω元,并把結(jié)果填寫在表格中:

(2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元?

(3)在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于400件的銷售任務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小華用若干個正方形和長方形準備拼成一個長方體的展開圖.拼完后,小華看來看去總覺得所拼圖形似乎存在問題.

1)請你幫小華分析一下拼圖是否存在問題:若有多余塊,則把圖中多余部分涂黑;若還缺少,則直接在原圖中補全.

2)若圖中的正方形邊長為2cm,長方形的長為3cm,寬為2cm,請直接寫出修正后所折疊而成的長方體的容積: cm3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.對角線互相垂直的四邊形是菱形

B.矩形的對角線互相垂直

C.一組對邊平行的四邊形是平行四邊形

D.四邊相等的四邊形是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個三角形的三個外角之比為5:4:3,則這個三角形內(nèi)角中最大的角是__________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列長度的三條線段中,能組成三角形的是(  )

A. 3cm、4cm、8cm B. 3cm、5cm、8cm C. 5cm、6cm、10cm D. 5cm、6cm、11cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于A,B兩點(點A在點B的左側(cè)),與y交于點C,BAC的平分線與y軸交于點D,與拋物線相交于點Q,P是線段AB上一點,過點P作x軸的垂線,分別交AD,AC于點E,F(xiàn),連接BE,BF.

(1)如圖1,求線段AC所在直線的解析式;

(2)如圖1,求BEF面積的最大值和此時點P的坐標;

(3)如圖2,以EF為邊,在它的右側(cè)作正方形EFGH,點P在線段AB上運動時正方形EFGH也隨之運動和變化,當(dāng)正方形EFGH的頂點G或頂點H在線段BC上時,求正方形EFGH的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】榮慶公司計劃從商店購買同一品牌的臺燈和手電筒,已知購買一個臺燈比購買一個手電筒多用20元,若用400元購買臺燈和用160元購買手電筒,則購買臺燈的個數(shù)是購買手電筒個數(shù)的一半.

(1)求購買該品牌一個臺燈、一個手電筒各需要多少元?

(2)經(jīng)商談,商店給予榮慶公司購買一個該品牌臺燈贈送一個該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個數(shù)是臺燈個數(shù)的2倍還多8個,且該公司購買臺燈和手電筒的總費用不超過670元,那么榮慶公司最多可購買多少個該品牌臺燈?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段AB=8cm,點C是直線AB上一點,線段BC=3cmD、E分別是線段AB與線段CB的中點,求線段DE的長度.

查看答案和解析>>

同步練習(xí)冊答案