【題目】某市為加固長(zhǎng)90米,高30米,壩頂寬為6米,迎水坡和背水坡都是1:1的橫斷面是梯形的防洪大壩,要將大壩加高2米,背水坡坡度改為1:1.5,已知壩頂寬不變,求大壩橫戴面積增加多少平方米?
【答案】大壩橫戴面積增加392平方米.
【解析】
過(guò)C作CG⊥AB于G,過(guò)D作DH⊥AB于H,過(guò)F作FM⊥AB于M,過(guò)E作EN⊥AB于N,求出AQ和BQ的長(zhǎng),根據(jù)題意得出增加的面積等于加寬后的梯形面積減去原來(lái)的梯形面積,根據(jù)梯形的面積公式求出即可.
過(guò)C作CG⊥AB于G,過(guò)D作DH⊥AB于H,過(guò)F作FM⊥AB于M,過(guò)E作EN⊥AB于N,
則四邊形CDHG和四邊形EFMN是矩形,
即CG=DH=30m,FM=EN=30+2=32(m),
∵梯形BCDQ的迎水坡和背水坡的坡度都是1:1,
∴BG=QH=30m,
同理AM=32×1.5=48(m),QN=32m,
∴AQ=48+6+32=86(m),BQ=30+6+30=66(m),
大壩橫截面面積增加×(6+86)×32-×(6+66)×30=392(m2),
答:大壩橫戴面積增加392平方米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】選擇適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)(x-1)2+2x(x-1)=0;
(2)x2-6x-6=0;
(3)6 000(1-x)2=4 860;
(4)(10+x)(50-x)=800;
(5)(2x-1)2=x(3x+2)-7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB、BC、CD分別與⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8.
(1)判斷△OBC的形狀,并證明你的結(jié)論
(2)求BC的長(zhǎng)
(3)求⊙O的半徑OF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn),點(diǎn)M是AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交射線CD于點(diǎn)N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為 時(shí),四邊形AMDN是矩形;②當(dāng)AM的值為 時(shí),四邊形AMDN是菱形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,陽(yáng)光通過(guò)窗口照到教室內(nèi),豎直窗框在地面上留下2.1 m長(zhǎng)的影子如圖所示,已知窗框的影子DE的點(diǎn)E到窗下墻腳的距離CE=3.9 m,窗口底邊離地面的距離BC=1.2 m,試求窗口的高度(即AB的值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,OH⊥AC于點(diǎn)H,過(guò)A點(diǎn)的切線與OC的延長(zhǎng)線交于點(diǎn)D,∠B=30°,OH=5,請(qǐng)求出:
(1)∠AOC的度數(shù);
(2)劣弧的長(zhǎng);(結(jié)果保留π)
(3)線段AD的長(zhǎng).(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,下列條件中不能判定直線AT是⊙O的切線的是( )
A. AB=4,AT=3,BT=5 B. ∠B=45°,AB=AT
C. ∠B=55°,∠TAC=55° D. ∠ATC=∠B
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是矩形,cot∠ADB=,AB=16.點(diǎn)E在射線BC上,點(diǎn)F在線段BD上,且∠DEF=∠ADB.
(1)求線段BD的長(zhǎng);
(2)設(shè)BE=x,△DEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出函數(shù)定義域;
(3)當(dāng)△DEF為等腰三角形時(shí),求線段BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為Rt△ABC的直角邊AC上一點(diǎn),以OC為半徑的⊙O與斜邊AB相切于點(diǎn)D,交OA于點(diǎn)E.已知BC=,AC=3.
(1)求AD的長(zhǎng);
(2)求圖中陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com