【題目】如圖,正方形ABCD邊長為3,連接AC,AE平分∠CAD,交BC的延長線于點E,F(xiàn)A⊥AE,交CB延長線于點F,則EF的長為 .
【答案】6
【解析】解:∵四邊形ABCD為正方形,且邊長為3,
∴AC=3 ,
∵AE平分∠CAD,
∴∠CAE=∠DAE,
∵AD∥CE,
∴∠DAE=∠E,
∴∠CAE=∠E,
∴CE=CA=3 ,
∵FA⊥AE,
∴∠FAC+∠CAE=90°,∠F+∠E=90°,
∴∠FAC=∠F,
∴CF=AC=3 ,
∴EF=CF+CE=3 +3 =6 ,
故答案為:6 .
利用正方形的性質(zhì)和勾股定理可得AC的長,由角平分線的性質(zhì)和平行線的性質(zhì)可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的長.
本題主要考查了正方形的性質(zhì),角平分線的性質(zhì)等,利用等角對等邊是解答此題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌的飲水機(jī)接通電源就進(jìn)入自動程序:開機(jī)加熱到水溫100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機(jī)后用時(min)成反比例關(guān)系,直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動開機(jī),重復(fù)上述自動程序.若在水溫為30℃時,接通電源后,水溫y(℃)和時間x(min)的關(guān)系如圖所示,水溫從100℃降到35℃所用的時間是( 。
A.27分鐘
B.20分鐘
C.13分鐘
D.7分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】趙老師是一名健步走運(yùn)動的愛好者,她用手機(jī)軟件記錄了某個月(30天)每天健步走的步數(shù)(單位:萬步),將記錄結(jié)果繪制成了如圖所示的統(tǒng)計圖.在每天所走的步數(shù)這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是( )
A.1.2,1.3
B.1.4,1.3
C.1.4,1.35
D.1.3,1.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE⊥BD,垂足為點E,若∠EAC=2∠CAD,則∠BAE=度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.
(1)求證:AE=BF;
(2)連接GB,EF,求證:GB∥EF;
(3)若AE=1,EB=2,求DG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標(biāo)有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.
(1)甲從中隨機(jī)抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機(jī)抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長均相等.網(wǎng)格中三個多邊形(分別標(biāo)記為①,②,③)的頂點均在格點上.被一個多邊形覆蓋的網(wǎng)格線中,豎直部分線段長度之和記為m,水平部分線段長度之和記為n,則這三個多邊形中滿足m=n的是( )
A.只有②
B.只有③
C.②③
D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“一號龍卷風(fēng)”給小島O造成了較大的破壞,救災(zāi)部門迅速組織力量,從倉儲D處調(diào)集救援物資,計劃先用汽車運(yùn)到與D在同一直線上的C、B、A三個碼頭中的一處,再用貨船運(yùn)到小島O.已知:OA⊥AD,∠ODA=15°,∠OCA=30°,∠OBA=45°CD=20km.若汽車行駛的速度為50km/時,貨船航行的速度為25km/時,問這批物資在哪個碼頭裝船,最早運(yùn)抵小島O?(在物資搬運(yùn)能力上每個碼頭工作效率相同,參考數(shù)據(jù): ≈1.4, ≈1.7).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,∠A=30°.分別以頂點A、B為圓心,大于 AB為半徑作弧,兩弧在直線AB兩側(cè)分別交于M、N兩點,過M、N作直線交AB于點P,交AC于點D,連接BD.下列結(jié)論中,錯誤的是( 。
A.直線AB是線段MN的垂直平分線
B.CD= AD
C.BD平分∠ABC
D.S△APD=S△BCD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com