三角形ABC為等腰直角三角形,其中∠A=90°,BC長(zhǎng)為6.
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出各個(gè)頂點(diǎn)的坐標(biāo);
(2)將(1)中各頂點(diǎn)的橫坐標(biāo)都加2,縱坐標(biāo)保持不變,與原圖案相比,所得的圖案有什么變化?
(3)將(1)中各頂點(diǎn)的橫坐標(biāo)不變,將縱坐標(biāo)都乘-1,與原圖案相比,所得的圖案有什么變化?
(4)將(1)中各頂點(diǎn)的橫坐標(biāo)都乘-2,縱坐標(biāo)保持不變,與原圖案相比,所得的圖案有什么變化?
分析:(1)以BC邊所在的直線為x軸,BC的中垂線(垂足為O)為y軸,建立直角坐標(biāo)系.因?yàn)锽C的長(zhǎng)為6,所以A(0,3),B(-3,0),C(3,0);
(2)橫坐標(biāo)都加2,縱坐標(biāo)保持不變,與原圖案相比,所得的圖案向右平移了2個(gè)單位長(zhǎng)度;
(3)將(1)中各頂點(diǎn)的橫坐標(biāo)不變,將縱坐標(biāo)都乘-1,與原圖案相比,所得的圖案與原圖案關(guān)于x軸對(duì)稱;
(4)將(1)中各頂點(diǎn)的橫坐標(biāo)都乘-2,縱坐標(biāo)保持不變,與原圖案相比,所得的圖案與原圖形相比所得的圖案在位置上關(guān)于y軸對(duì)稱,橫向拉長(zhǎng)了2倍.
解答:精英家教網(wǎng)解:(1)以BC邊所在的直線為x軸,BC的中垂線(垂足為O)為y軸,
建立直角坐標(biāo)系(如圖),
因?yàn)锽C的長(zhǎng)為6,
所以AO=
1
2
BC=3,所以A(0,3),B(-3,0),C(3,0);

(2)整個(gè)圖案向右平移了2個(gè)單位長(zhǎng)度,如圖△A2B2C2;

(3)與原圖案關(guān)于x軸對(duì)稱,如圖△A3BC;

(4)與原圖形相比所得的圖案在位置上關(guān)于y軸對(duì)稱,橫向拉長(zhǎng)了2倍,如圖△AB4C4
點(diǎn)評(píng):主要考查了坐標(biāo)與圖形的變化--平移和對(duì)稱;解題的關(guān)鍵是要掌握坐標(biāo)的變化和圖形之間對(duì)應(yīng)的變化規(guī)律,根據(jù)坐標(biāo)的變化特點(diǎn)可推出圖形的變化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•沙坪壩區(qū)模擬)如圖1,在同一平面內(nèi),Rt△ABC≌Rt△DEF,其中∠ACB=∠DFE=90°,BC=EF=3,AC=DF=4,AC與DF重合,△ABC始終保持不動(dòng).
(1)將△DEF沿CB(EB)方向平移,直到點(diǎn)E與點(diǎn)B重合為止,設(shè)平移的距離為x,兩個(gè)三角形重疊部分的面積為y,寫出y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)如圖2,將△DEF繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后得到的三角形為△D′E′F,設(shè)D′E′與AC交于點(diǎn)M,當(dāng)∠ECE′=∠EAC時(shí),求線段CM的長(zhǎng);
(3)如圖3,在△DEF繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)的過程中,若設(shè)D′F所在直線與AB所在直線的交點(diǎn)為N,是否存在點(diǎn)N使△ACN為等腰三角形,若存在,求出線段BN的長(zhǎng),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等腰直角三角形△ABC的直角邊與正方形MNPQ的邊長(zhǎng)都為4cm,且在同一直線上,開始時(shí)A點(diǎn)與M點(diǎn)重合,讓△ABC向右平移,直到點(diǎn)C與點(diǎn)N重合.設(shè)陰影部分面積為y(cm2),MA的長(zhǎng)為x(cm),則y與x之間的函數(shù)關(guān)系的圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中學(xué)學(xué)習(xí)一本通 數(shù)學(xué)八年級(jí)下冊(cè) 北師大新課標(biāo) 題型:044

等腰直角三角形ABC與等腰直三角形A1B1C1相似,相似比為4∶1,已知斜邊A1B1=6 cm,求△ABC斜邊AB上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年重慶市沙坪壩區(qū)中考適應(yīng)性考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1,在同一平面內(nèi),Rt△ABC≌Rt△DEF,其中∠ACB=∠DFE=90°,BC=EF=3,AC=DF=4,AC與DF重合,△ABC始終保持不動(dòng).
(1)將△DEF沿CB(EB)方向平移,直到點(diǎn)E與點(diǎn)B重合為止,設(shè)平移的距離為x,兩個(gè)三角形重疊部分的面積為y,寫出y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)如圖2,將△DEF繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后得到的三角形為△D′E′F,設(shè)D′E′與AC交于點(diǎn)M,當(dāng)∠ECE′=∠EAC時(shí),求線段CM的長(zhǎng);
(3)如圖3,在△DEF繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)的過程中,若設(shè)D′F所在直線與AB所在直線的交點(diǎn)為N,是否存在點(diǎn)N使△ACN為等腰三角形,若存在,求出線段BN的長(zhǎng),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年重慶市沙坪壩區(qū)中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

如圖1,在同一平面內(nèi),Rt△ABC≌Rt△DEF,其中∠ACB=∠DFE=90°,BC=EF=3,AC=DF=4,AC與DF重合,△ABC始終保持不動(dòng).
(1)將△DEF沿CB(EB)方向平移,直到點(diǎn)E與點(diǎn)B重合為止,設(shè)平移的距離為x,兩個(gè)三角形重疊部分的面積為y,寫出y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)如圖2,將△DEF繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后得到的三角形為△D′E′F,設(shè)D′E′與AC交于點(diǎn)M,當(dāng)∠ECE′=∠EAC時(shí),求線段CM的長(zhǎng);
(3)如圖3,在△DEF繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)的過程中,若設(shè)D′F所在直線與AB所在直線的交點(diǎn)為N,是否存在點(diǎn)N使△ACN為等腰三角形,若存在,求出線段BN的長(zhǎng),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案