【題目】如圖,A、B兩點的坐標分別是(8,0)、(0,6),點P由點B出發(fā)沿BA方向向點A作勻速直線運動,速度為每秒3個單位長度,點Q由A出發(fā)沿AO(O為坐標原點)方向向點O作勻速直線運動,速度為每秒2個單位長度,連接PQ,若設運動時間為t(0<t<)秒.解答如下問題:
(1)當t為何值時,PQ∥BO?
(2)設△AQP的面積為S,
①求S與t之間的函數(shù)關系式,并求出S的最大值;
②若我們規(guī)定:點P、Q的坐標分別為(x1,y1),(x2,y2),則新坐標(x2﹣x1,y2﹣y1)稱為“向量PQ”的坐標.當S取最大值時,求“向量PQ”的坐標.
【答案】(1)當t=秒時,PQ∥BO(2)①S=(0<t<),5②(,﹣3)
【解析】解:(1)∵A、B兩點的坐標分別是(8,0)、(0,6),則OB=6,OA=8。
∴。
如圖①,當PQ∥BO時,AQ=2t,BP=3t,則AP=10﹣3t。
∵PQ∥BO,∴,即,解得t=。
∴當t=秒時,PQ∥BO。
(2)由(1)知:OA=8,OB=6,AB=10.
①如圖②所示,過點P作PD⊥x軸于點D,
則PD∥BO。
∴△APD∽△ABO。
∴,即,解得PD=6﹣t。
∴。
∴S與t之間的函數(shù)關系式為:S=(0<t<)。
∴當t=秒時,S取得最大值,最大值為5(平方單位)。
②如圖②所示,當S取最大值時,t=,
∴PD=6﹣t=3,∴PD=BO。
又PD∥BO,∴此時PD為△OAB的中位線,則OD=OA=4。∴P(4,3)。
又AQ=2t=,∴OQ=OA﹣AQ=,∴Q(,0)。
依題意,“向量PQ”的坐標為(﹣4,0﹣3),即(,﹣3).
∴當S取最大值時,“向量PQ”的坐標為(,﹣3)。
(1)如圖①所示,當PQ∥BO時,利用平分線分線段成比例定理,列線段比例式,求出t的值。
(2)①求S關系式的要點是求得△AQP的高,如圖②所示,過點P作過點P作PD⊥x軸于點D,構造平行線PD∥BO,由△APD∽△ABO得 求得PD,從而S可求出.S與t之間的函數(shù)關系式是一個關于t的二次函數(shù),利用二次函數(shù)求極值的方法求出S的最大值。
②求出點P、Q的坐標:當S取最大值時,可推出此時PD為△OAB的中位線,從而可求出點P的縱橫坐標,又易求Q點坐標,從而求得點P、Q的坐標;求得P、Q的坐標之后,代入“向量PQ”坐標的定義(x2﹣x1,y2﹣y1),即可求解。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,□ABCD的對角線AC,BD相交于點O,E是以A為圓心,以2為半徑的圓上一 動點,連結CE,點P為CE的中點,連結BP,若AC=,BD=,則BP的最大值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在求兩位數(shù)的平方時,可以用完全平方式及“列豎式”的方法進行速算,求解過程如下.
例如:求322.
解:因為(3x+2y)2=9x2+4y2+12xy,將上式中等號右邊的系數(shù)填入下面的表格中可得:
所以322=1024.
(1)下面是嘉嘉仿照例題求892的一部分過程,請你幫他填全表格及最后結果;
解:因為(8x+9y)2=64x2+81y2+144xy,將上式中等號右邊的系數(shù)填入下面的表格中可得:
所以892= ;
(2)仿照例題,速算672;
(3)琪琪用“列豎式”的方法計算一個兩位數(shù)的平方,部分過程如圖所示.若這個兩位數(shù)的個位數(shù)字為a,則這個兩位數(shù)為 (用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,B,P,A,C是圓上的點,, PD⊥CD,CD交⊙O于A,若AC=AD,PD = ,sin∠PAD = ,則△PAB的面積為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為100海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東37°方向上的B處,求此時輪船所在的B處與燈塔P的距離(sin53°=0.8,sin37°=0.6,tan53°=1.3,結果精確到0.1).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△AOB中,AB⊥OB,且AB=OB=3,設直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關系的圖象為下列選項中的( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,學校環(huán)保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點C處測得樹頂B的仰角為 60°,然后在坡頂D測得樹頂B的仰角為300,已知斜坡CD的長度為20m,DE的長為10m,則樹AB的高度是( ) m
A. B. 30 C. D. 40
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC 中,AB=AC, ∠BAC <60°,將線段 AB 繞點 A逆時針旋轉 60°得到點 D, 點 E 與點 D 關于直線 BC 對稱,連接 CD,CE,DE.
(1)依題意補全圖形;
(2)判斷△CDE 的形狀,并證明;
(3)請問在直線CE上是否存在點 P,使得 PA - PB =CD 成立?若存在,請用文字描述出點 P 的準確位置,并畫圖證明;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com