【題目】如圖,一個(gè)梯子AB長(zhǎng)2.5米,頂端A靠在墻AC上,這時(shí)梯子下端B與墻角C距離為1.5米,梯子滑動(dòng)后停在DE的位置上,測(cè)得BD長(zhǎng)為0.5米,則梯子頂端A下落了( 。┟祝

A. 0.5 B. 1 C. 1.5 D. 2

【答案】A

【解析】分析:在直角三角形ABC,根據(jù)勾股定理AC=2,由于梯子的長(zhǎng)度不變在直角三角形CDE,根據(jù)勾股定理CE=1.5,所以AE=0.5,即梯子的頂端下滑了0.5米.

詳解RtABC,AB=2.5BC=1.5,

AC===2米.

RtECD,AB=DE=2.5,CD=(1.5+0.5)米

EC===1.5,

AE=ACCE=21.5=0.5米.

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形網(wǎng)格(邊長(zhǎng)為1的小正方形組成的網(wǎng)格紙,正方形的頂點(diǎn)稱為格點(diǎn))是我們?cè)诔踔须A段常用的工具,利用它可以解決很多問題.

(1)如圖①中,△ABC是格點(diǎn)三角形(三個(gè)頂點(diǎn)為格點(diǎn)),則它的面積為 ;

(2)如圖②,在4×4網(wǎng)格中作出以A為頂點(diǎn),且面積最大的格點(diǎn)正方形(四個(gè)頂點(diǎn)均為格點(diǎn));

(3)人們發(fā)現(xiàn),記格點(diǎn)多邊形(頂點(diǎn)均為格點(diǎn))內(nèi)的格點(diǎn)數(shù)為a,邊界上的格點(diǎn)數(shù)為b,則格點(diǎn)多邊形的面積可表示為Smanb-1,其中mn為常數(shù).試確定m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,AB=AC,D,A,E三點(diǎn)都在直線mBDA=AEC=BAC,BD=3,CE=6,DE的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,BDABC的中線,CEBD于點(diǎn)E,AFBD,BD的延長(zhǎng)線于點(diǎn)F.

(1)試探索BE,BFBD三者之間的數(shù)量關(guān)系,并加以證明;

(2)連接AE,CF,求證:AECF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論:w

①若a+b+c=0,且abc≠0,則方程a+bx+c=0的解是x=1;

②若a(x﹣1)=b(x﹣1)有唯一的解,則a≠b;

③若b=2a,則關(guān)于x的方程ax+b=0(a≠0)的解為x=﹣

④若a+b+c=1,且a≠0,則x=1一定是方程ax+b+c=1的解;

其中結(jié)論正確個(gè)數(shù)有( )

A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸、y軸分別交于A,B兩點(diǎn),COB的中點(diǎn),DAB上一點(diǎn),四邊形OEDC是菱形,則OAE的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高鐵的開通,給N市市民出行帶來了極大的方便,“元旦”期間,甲、乙兩人應(yīng)邀到A市的藝術(shù)館參加演出,甲乘私家車從N市出發(fā)1小時(shí)后,乙乘坐高鐵從N市出發(fā),先到A市火車站,然后再轉(zhuǎn)乘出租車到A市的藝術(shù)館(換車時(shí)間忽略不計(jì)),兩人恰好同時(shí)到達(dá)A市的藝術(shù)館,他們離開N市的距離y(千米)與乘車時(shí)間x(小時(shí))的關(guān)系如圖所示,請(qǐng)結(jié)合圖象解答下列問題:
(1)高鐵的平均速度是每小時(shí)多少千米?
(2)分別求甲、乙(乘坐高鐵時(shí))兩人離開N市的距離y與乘車時(shí)間x的函數(shù)關(guān)系式;
(3)若甲要提前30分鐘到達(dá)藝術(shù)館,那么私家車的速度必須達(dá)到多少千米/小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,6),B(b,0),且b<0,點(diǎn)C,D分別是OA,AB的中點(diǎn),△AOB的外角平分線與CD的延長(zhǎng)線交于點(diǎn)E.

(1)求證:∠DAO=∠DOA;

(2)①若b=-8,求CE的長(zhǎng);

②若CE+1,則b=________.

(3)是否存在這樣的b值,使得四邊形OBED為平行四邊形?若存在,請(qǐng)求出此時(shí)四邊形OBED對(duì)角線的交點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

(4)直線AEx軸交于點(diǎn)F,請(qǐng)用含b的式子直接寫出點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)P是AB下方的半圓上不與點(diǎn)A,B重合的一個(gè)動(dòng)點(diǎn),點(diǎn)C為AP中點(diǎn),延長(zhǎng)CO交⊙O于點(diǎn)D,連接AD,過點(diǎn)D作⊙O的切線交PB的廷長(zhǎng)線于點(diǎn)E,連CE交AB于點(diǎn)F,連接DF.
(1)求證:△DAC≌△ECP;
(2)填空: ①四邊形ACED是何種特殊的四邊形?
②在點(diǎn)P運(yùn)動(dòng)過程中,線段DF、AP的數(shù)量關(guān)系是

查看答案和解析>>

同步練習(xí)冊(cè)答案