【題目】在直角中,,,AD,CE分別是和的平分線,AD,CE相交于點(diǎn)F.
求的度數(shù);
判斷FE與FD之間的數(shù)量關(guān)系,并證明你的結(jié)論.
【答案】(1)120°;(2)見解析.
【解析】
(1)由已知條件易得∠BAC=30°,結(jié)合AD,CE分別是∠BAC和∠ACB的角平分線可得∠FAC=15°,∠FCA=45°,由此結(jié)合三角形內(nèi)角和定理可得∠AFC=120°,由此即可得到∠EFD=∠AFC=120°.
(2)如下圖,在AC是截取AG=AE,連接FG,在由已知條件易證△AGF≌△AEF,由此可得∠AFG=∠AFE=∠FAC+∠ECA=60°,結(jié)合∠AFC=120°,可得∠CFG=60°,∠CFD=60°,這樣結(jié)合∠GCF=∠DCF,CF=CF即可得到△GCF≌△DCF,由此可得FG=FD,結(jié)合FE=FG即可得到FE=FD.
(1)∵中,,
∴,
∵、CE分別是、的平分線,
∴,,
∴,
∴;
與FD之間的數(shù)量關(guān)系為;
在AC上截取,連接FG,
∵是的平分線,
∴
在和中,∵,
∴≌,
∴,∠AFG=∠AFE=∠FAC+∠ECA=60°,
∴∠CFD=∠AFE=60°,
∴∠CFD=∠CFG,
∵在和中,,
∴≌,
∴,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次綜合實(shí)踐活動中,小明要測某地一座古塔AE的高度.如圖,已知塔基頂端B(和A、E共線)與地面C處固定的繩索的長BC為80m.她先測得∠BCA=35°,然后從C點(diǎn)沿AC方向走30m到達(dá)D點(diǎn),又測得塔頂E的仰角為50°,求塔高AE.(人的高度忽略不計(jì),結(jié)果用含非特殊角的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知正方形的邊長為4,甲、乙兩動點(diǎn)分別從正方形ABCD的頂點(diǎn)A、C同時沿正方形的邊開始移動,甲點(diǎn)依順時針方向環(huán)行,乙點(diǎn)依逆時針方向環(huán)行,若乙的速度是甲的速度的3倍,則它們第2018次相遇在邊 ( )上.
A. AB B. BC C. CD D. DA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解下列方程,其中應(yīng)在方程的左右兩邊同時加上4的是( 。
A. -2x=5
B. +4x=5
C. +2x=5
D.2 -4x=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:五蓮縣新瑪特購物中心第一次用5000元購進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價和售價如下表(注:獲利=售價﹣進(jìn)價)
甲 | 乙 | |
進(jìn)價(元/件) | 20 | 30 |
售價(元/件) | 29 | 40 |
(1)新瑪特購物中心將第一次購進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤?
(2)該購物中心第二次以第一次的進(jìn)價又購進(jìn)甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得總利潤比第一次獲得的總利潤多160元,求第二次乙種商品是按原價打幾折銷售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y= x+4與x軸、y軸分別交于A、B兩點(diǎn),把△A0B繞點(diǎn)A順時針旋轉(zhuǎn)90°后得到△AO′B′,則點(diǎn)B′的坐標(biāo)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com