2011年3月,英國(guó)和新加坡研究人員制造出觀測(cè)極限為0.000 000 05米的光學(xué)顯微鏡,其中0.000 000 05米用科學(xué)記數(shù)法表示正確的是(  )

 

A.

0.5×10﹣9

B.

5×10﹣8

C.

5×10﹣9

D.

5×10﹣7

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,等腰梯形ABCD中,AD∥BC,BC=50,AB=20,∠B=60°,則AD=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


用科學(xué)記數(shù)法表示0.0000061,結(jié)果是( 。

 

A.

6.1×10﹣5

B.

6.1×10﹣6

C.

0.61×10﹣5

D.

61×10﹣7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


為了掌握我市中考模擬數(shù)學(xué)試題的命題質(zhì)量與難度系數(shù),命題教師赴我市某地選取一個(gè)水平相當(dāng)?shù)某跞昙?jí)進(jìn)行調(diào)研,命題教師將隨機(jī)抽取的部分學(xué)生成績(jī)(得分為整數(shù),滿分為160分)分為5組:第一組85~10;第二組100~115;第三組115~130;第四組130~145;第五組145~160,統(tǒng)計(jì)后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計(jì)圖,觀察圖形的信息,回答下列問(wèn)題:

(1)本次調(diào)查共隨機(jī)抽取了該年級(jí)多少名學(xué)生?并將頻數(shù)分布直方圖補(bǔ)充完整;

(2)若將得分轉(zhuǎn)化為等級(jí),規(guī)定:得分低于100分評(píng)為“D”,100~130分評(píng)為“C”,130~145分評(píng)為“B”,145~160分評(píng)為“A”,那么該年級(jí)1500名考生中,考試成績(jī)?cè)u(píng)為“B”的學(xué)生大約有多少名?

(3)如果第一組只有一名是女生,第五組只有一名是男生,針對(duì)考試成績(jī)情況,命題教師決定從第一組、第五組分別隨機(jī)選出一名同學(xué)談?wù)勛鲱}的感想,請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法求出所選兩名學(xué)生剛好是一名女生和一名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


填空:

(a﹣b)(a+b)=   ;

(a﹣b)(a2+ab+b2)=   ;

(a﹣b)(a3+a2b+ab2+b3)=   

(2)猜想:

(a﹣b)(an﹣1+an﹣2b+…+abn﹣2+bn﹣1)=   (其中n為正整數(shù),且n≥2).

(3)利用(2)猜想的結(jié)論計(jì)算:

29﹣28+27﹣…+23﹣22+2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


不等式組的整數(shù)解的個(gè)數(shù)是( 。

 

A.

3

B.

5

C.

7

D.

無(wú)數(shù)個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


某正n邊形的一個(gè)內(nèi)角為108°,則n= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,以點(diǎn)O為位似中心,將△ABC放大得到△DEF.若AD=OA,則△ABC與△DEF的面積之比為(  )

 

A.

1:2

B.

1:4

C.

1:5

D.

1:6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


閱讀資料:

如圖1,在平面之間坐標(biāo)系xOy中,A,B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B兩點(diǎn)間的距離為AB= .

我們知道,圓可以看成到圓心距離等于半徑的點(diǎn)的集合,如圖2,在平面直角坐標(biāo)系xoy中,A(x,y)為圓上任意一點(diǎn),則A到原點(diǎn)的距離的平方為OA2=|x﹣0|2+|y﹣0|2,當(dāng)⊙O的半徑為r時(shí),⊙O的方程可寫(xiě)為:x2+y2=r2

問(wèn)題拓展:如果圓心坐標(biāo)為P(a,b),半徑為r,那么⊙P的方程可以寫(xiě)為。 綜合應(yīng)用:

如圖3,⊙P與x軸相切于原點(diǎn)O,P點(diǎn)坐標(biāo)為(0,6),A是⊙P上一點(diǎn),連接OA,使tan∠POA=,作PD⊥OA,垂足為D,延長(zhǎng)PD交x軸于點(diǎn)B,連接AB.

①證明AB是⊙P的切點(diǎn);

②是否存在到四點(diǎn)O,P,A,B距離都相等的點(diǎn)Q?若存在,求Q點(diǎn)坐標(biāo),并寫(xiě)出以Q為圓心,以O(shè)Q為半徑的⊙O的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案