【題目】如圖,在△ABC中,ADBC,AE平分∠BAC

1)若∠B=70°,∠C=30°,求;

①∠BAE的度數(shù).

②∠DAE的度數(shù).

2)探究:如果只知道∠B=C+40°,那么能求岀∠DAE的度數(shù)嗎?若能,請(qǐng)你寫出求解過(guò)程;若不能,請(qǐng)說(shuō)明理由.

【答案】1)①∠BAE=40°;②∠DAE=20°;(2)∠DAE=20°

【解析】

1)①利用三角形的內(nèi)角和定理求出∠BAC,再利用角平分線定義求∠BAE.②先求出∠BAD,就可知道∠DAE的度數(shù).

2)用∠B,∠C表示∠DAE,即可求岀∠DAE的度數(shù).

解:(1)①∵∠B=70°,∠C=30°

∴∠BAC=180°-70°-30°=80°,

AE平分∠BAC

∴∠BAE=40°;

②∵ADBC,∠B=70°,

∴∠BAD=90°-B=90°-70°=20°,

而∠BAE=40°,

∴∠DAE=20°;

2)∵AE為角平分線,

∴∠BAE=180°-B-C),

∵∠BAD=90°-B,

∴∠DAE=BAE-BAD=180°-B-C-90°-B=(∠B-C),

又∵∠B=C+40°,

∴∠B-C=40°

∴∠DAE=20°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分線交于O點(diǎn),過(guò)點(diǎn)OBC的平行線交ABM點(diǎn),交ACN點(diǎn),則△AMN的周長(zhǎng)為( )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是圓O的直徑,O為圓心,AD、BD是半圓的弦,且∠PDA=PBD.延長(zhǎng)PD交圓的切線BE于點(diǎn)E

(1)證明:直線PD是⊙O的切線.

(2)如果∠BED=60°,,求PA的長(zhǎng).

(3)將線段PD以直線AD為對(duì)稱軸作對(duì)稱線段DF,點(diǎn)F正好在圓O上,如圖2,求證:四邊形DFBE為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了完成池百(河池至百色)高速公路能在2018年底通車任務(wù),各項(xiàng)工程都加快了施工力度.其中某項(xiàng)工程,甲隊(duì)單獨(dú)完成所需時(shí)間比乙隊(duì)單獨(dú)完成所需時(shí)間多5個(gè)月,并且兩隊(duì)單獨(dú)完成所需時(shí)間的乘積恰好等于兩隊(duì)單獨(dú)完成所需時(shí)間之和的6倍:

(1)求甲乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需幾個(gè)月?

(2)若甲隊(duì)每月的施工費(fèi)用為100萬(wàn)元,乙隊(duì)每月的施工費(fèi)用比甲隊(duì)多50萬(wàn)元.在保證工程質(zhì)量的前提下,為了縮短工期,擬安排甲、乙兩隊(duì)分工合作完成這項(xiàng)工程.在完成這項(xiàng)工程中,甲隊(duì)施工時(shí)間是乙隊(duì)施工時(shí)間的兩倍,那么,甲隊(duì)最多施工幾個(gè)月才能使工程款不超過(guò)1500萬(wàn)元?(甲、乙兩隊(duì)的施工時(shí)間按時(shí)取整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店從廠家選購(gòu)甲、乙兩種商品,乙商品每件進(jìn)價(jià)比甲商品每件進(jìn)價(jià)少20元,若購(gòu)進(jìn)甲商品5件和乙商品4件共需要1000元;

(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?

(2)若甲種商品的售價(jià)為每件145元,乙種商品的售價(jià)為每件120元,該商店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種商品共40件,且這兩種商品全部售出后總利潤(rùn)不少于870元,則甲種商品至少可購(gòu)進(jìn)多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)(發(fā)現(xiàn))如圖①,已知等邊ABC,將直角三角板的60°角頂點(diǎn)D任意放在BC邊上(點(diǎn)D不與點(diǎn)B、C重合),使兩邊分別交線段AB、AC于點(diǎn)E、F.

①若AB=6,AE=4,BD=2,則CF =________;

②求證:EBD∽△DCF.

(2)(思考)若將圖①中的三角板的頂點(diǎn)DBC邊上移動(dòng),保持三角板與邊AB、AC的兩個(gè)交點(diǎn)E、F都存在,連接EF,如圖②所示.問(wèn)點(diǎn)D是否存在某一位置,使ED平分∠BEFFD平分∠CFE?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

(3)(探索)如圖③,在等腰ABC中,AB=AC,點(diǎn)OBC邊的中點(diǎn),將三角形透明紙板的一個(gè)頂點(diǎn)放在點(diǎn)O處(其中∠MON=B),使兩條邊分別交邊AB、AC于點(diǎn)E、F(點(diǎn)E、F均不與ABC的頂點(diǎn)重合),連接EF.設(shè)∠B=α,則AEFABC的周長(zhǎng)之比為________(用含α的表達(dá)式表示)

.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平分,平分,點(diǎn)上,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A、B、C、D、E是⊙O上五點(diǎn),⊙O的直徑BE=2,BCD=120°,A的中點(diǎn),延長(zhǎng)BA到點(diǎn)P,使BA=AP,連接PE.

(1)求線段BD的長(zhǎng);

(2)求證:直線PE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某學(xué)校的教室多媒體投影儀E正對(duì)投影幕布AB的中央,其距離EG = 3.60米.為了方便課堂教學(xué)與使用,現(xiàn)將投影幕布由黑板正中AB的位置調(diào)整到左面BC的位置處,測(cè)得米,,此時(shí)投影儀E調(diào)整到線段EB上的點(diǎn)F處且恰好正對(duì)投影幕布BC的中央.若投影儀與投影幕布的安裝距離控制在3.45米到3.65米之間效果最好,則調(diào)整后的投影儀F與投影幕布BC之間的距離是否符合要求?請(qǐng)通過(guò)計(jì)算加以說(shuō)明.

(參考數(shù)據(jù): ,結(jié)果精確到0.01)

查看答案和解析>>

同步練習(xí)冊(cè)答案