【題目】如圖,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4=A4A5,過點A1、A2、A3、A4、A5分別作x軸的垂線與反比例函數y=(x≠0)的圖象相交于點P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2,A2P3A3,A3P4A4,A4P5A5,并設其面積分別為S1、S2、S3、S4、S5,則S10=_____.(n≥1的整數)
科目:初中數學 來源: 題型:
【題目】如圖,過y軸上一個動點M作x軸的平行線,交雙曲線y= 于點A,交雙曲線于點B,點C、點D在x軸上運動,且始終保持DC=AB,則平行四邊形ABCD的面積是( 。
A. 7 B. 10 C. 14 D. 28
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下表顯示了同學們用計算機模擬隨機投針實驗的某次實驗的結果.
投針次數n | 1000 | 2000 | 3000 | 4000 | 5000 | 10000 | 20000 |
針與直線相交的次數m | 454 | 970 | 1430 | 1912 | 2386 | 4769 | 9548 |
針與直線相交的頻率p=
| 0.454 | 0.485 | 0.4767 | 0.478 | 0.4772 | 0.4769 | 0.4774 |
下面有三個推斷:
①投擲1000次時,針與直線相交的次數是454,針與直線相交的概率是0.454;
②隨著實驗次數的增加,針與直線相交的頻率總在0.477附近,顯示出一定的穩(wěn)定性,可以估計針與直線相交的概率是0.477;
③若再次用計算機模擬此實驗,則當投擲次數為10000時,針與直線相交的頻率一定是0.4769.
其中合理的推斷的序號是:_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B、C重合),以AD為直角邊在AD右側作等腰直角三角形ADE,且∠DAE=90°,連接CE.
(1)如圖①,當點D在線段BC上時:
①BC與CE的位置關系為 ;
②BC、CD、CE之間的數量關系為 .
(2)如圖②,當點D在線段CB的延長線上時,結論①,②是否仍然成立?若不成立,請你寫出正確結論,并給予證明.
(3)如圖③,當點D在線段BC的延長線上時,BC、CD、CE之間的數量關系為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=﹣x2+bx+c與直線y=﹣x+m相交于第一象限內不同的兩點A(4,n),B(1,4),
(1)求此拋物線的解析式.
(2)拋物線上是否存點P,使直線OP將線段AB平分?若存在直接求出P點坐標;若不存在說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩個全等的直角三角形 ABC 和 DEF 重疊在一起,其中∠A=60°,AC=1.固定△ABC 不動,將△DEF 進行如下操作:
(1)如圖,△DEF 沿線段 AB 向右平移(即 D 點在線段 AB 內移動),連接 DC、CF、FB,四邊形 CDBF 的形狀在不斷的變化,但它的面積不變化,請求出其面積.
(2)如圖,當 D 點移到 AB 的中點時,請你猜想四邊形CDBF 的形狀,并說明理由.
(3)如圖,△DEF 的 D 點固定在 AB 的中點,然后繞 D 點按順時針方向旋轉△DEF,使 DF 落在 AB 邊上,此時 F 點恰好與 B 點重合,連接 AE,請你求出 sinα的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AD∥BC,AB=DC,E是對角線AC上一點,且AC·CE=AD·BC.
(1)求證:∠DCA=∠EBC;
(2)延長BE交AD于F,求證:AB2=AF·AD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若關于x的一元二次方程(m+1)x2﹣2x﹣1=0有兩個不相等的實數根,
(1)求m的取值范圍;
(2)若x=1是方程的一個根,求m的值和另一個根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,某幼兒園為了加強安全管理,決定將園內的滑滑板的傾斜角由45°降為30°,已知原滑滑板AB的長為5米,點D、B、C在同一水平地面上.若滑滑板的正前方能有3米長的空地就能保證安全,原滑滑板的前方有6米長的空地,像這樣改造是否可行?請說明理由.(參考數據:≈1.414,≈1.732,≈2.449)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com