【題目】如圖,在ABCD中,點(diǎn)E在邊AD上,以BE為折痕,將△ABE向上翻折,點(diǎn)A正好落在CD上的點(diǎn)F處.若△FDE的周長為5,△FCB的周長為17,則FC的長為

【答案】6
【解析】解:如圖,

∵四邊形ABCD為平行四邊形,
∴AD=BC,AB=DC;
由題意得:AE=FE,AB=BF;
∵△FDE的周長為5,△FCB的周長為17,
∴DE+DF+EF=5,CF+BC+BF=17,
∴(DE+EA)+(DF+CF)+BC+AB=22,
即2(AB+BC)=22,
∴AB+BC=11,即BF+BC=11;
∴FC=17﹣11=6,
所以答案是6.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解翻折變換(折疊問題)的相關(guān)知識,掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,AB=AC,若以點(diǎn)B為圓心,BC長為半徑畫弧,交腰AC于點(diǎn)E,則下列結(jié)論一定正確的是( )

A.AE=EC
B.AE=BE
C.∠EBC=∠BAC
D.∠EBC=∠ABE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為豐富學(xué)生的校園生活,某校舉行“與愛同行”朗誦比賽,賽后整理參賽同學(xué)的成績,繪制成如下不完整的統(tǒng)計(jì)圖表,請根據(jù)圖表中的信息解答下列問題.

組別

成績x(分)

頻數(shù)(人數(shù))

A

8.0≤x<8.5

a

B

8.5≤x<9.0

8

C

9.0≤x<9.5

15

D

9.5≤x<10

3


(1)圖中a= , 這次比賽成績的眾數(shù)落在組;
(2)請補(bǔ)全頻數(shù)分布直方圖;
(3)學(xué)校決定選派本次比賽成績最好的3人參加全市中學(xué)生朗誦比賽,并為參賽選手準(zhǔn)備了2件白色、1件藍(lán)色上衣和黑色、藍(lán)色、白色的褲子各1條,小軍先選,他從中隨機(jī)選取一件上衣和一條褲子搭配成一套衣服,請用畫樹狀圖法或列表法求出上衣和褲子搭配成不同顏色的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 (m>0)與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左邊,C是拋物線上一個(gè)動(dòng)點(diǎn)(點(diǎn)C與點(diǎn)A,B不重合),D是OC的中點(diǎn),連結(jié)BD并延長,交AC于點(diǎn)E,則 的值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一直線與兩坐標(biāo)軸的正半軸分別交于A,B兩點(diǎn),P是線段AB上任意一點(diǎn)(不包括端點(diǎn)),過P分別作兩坐標(biāo)軸的垂線與兩坐標(biāo)軸圍成的矩形的周長為10,則該直線的函數(shù)表達(dá)式是( )

A.y=x+5
B.y=x+10
C.y=﹣x+5
D.y=﹣x+10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 y=ax2+bx+ca≠0)經(jīng)過點(diǎn)A(-3,0)、B(1,0)、C(-2,1),交y軸于點(diǎn)M.
(1)求拋物線的表達(dá)式;
(2)D為拋物線在第二象限部分上的一點(diǎn),作DE垂直x軸于點(diǎn)E,交線段AM于點(diǎn)F,求線段DF長度的最大值,并求此時(shí)點(diǎn)D的坐標(biāo);
(3)拋物線上是否存在一點(diǎn)P,作PN垂直x軸于點(diǎn)N,使得以點(diǎn)P、A.N為頂點(diǎn)的三角形與△MAO相似?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+6x交x軸正半軸于點(diǎn)A,頂點(diǎn)為M,對稱軸MB交x軸于點(diǎn)B.過點(diǎn)C(2,0)作射線CD交MB于點(diǎn)D(D在x軸上方),OE∥CD交MB于點(diǎn)E,EF∥x軸交CD于點(diǎn)F,作直線MF.

(1)求點(diǎn)A,M的坐標(biāo).
(2)當(dāng)BD為何值時(shí),點(diǎn)F恰好落在該拋物線上?
(3)當(dāng)BD=1時(shí)
求直線MF的解析式,并判斷點(diǎn)A是否落在該直線上.
(4)②延長OE交FM于點(diǎn)G,取CF中點(diǎn)P,連結(jié)PG,△FPG,四邊形DEGP,四邊形OCDE的面積分別記為S1 , S2 , S3 , 則S1:S2:S3=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線AC,BD并于點(diǎn)O,經(jīng)過點(diǎn)O的直線交AB于E,交CD于F.

(1)求證:OE=OF.
(2)連接DE,BF,則EF與BD滿足什么條件時(shí),四邊形DEBF是矩形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,CD=6cm,AD=2cm,動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P沿BA,AD,DC運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q沿BC運(yùn)動(dòng)到C點(diǎn)停止,兩點(diǎn)運(yùn)動(dòng)時(shí)的速度都是1cm/s,而當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),點(diǎn)Q正好到達(dá)點(diǎn)C.設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為t(s),△BPQ的面積為y(cm2).下圖中能正確表示整個(gè)運(yùn)動(dòng)中y關(guān)于t的函數(shù)關(guān)系的大致圖象是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案