精英家教網(wǎng)如圖,⊙O中,弦AB、CD相交于AB的中點E,連接AD并延長至點F,使DF=AD,連接BC、BF.
(1)求證:△CBE∽△AFB;
(2)當
BE
FB
=
3
4
時,求
CB
AD
的值.
分析:(1)根據(jù)中位線的判定得出ED是△ABF的中位線,再利用相似三角形的判定得出△CBE∽△AFB;
(2)利用相似三角形的性質即可得出
CB
AD
的值.
解答:(1)證明:∵AE=EB,AD=DF,
∴ED是△ABF的中位線,
∴ED∥BF,
∴∠CEB=∠ABF,
又∠C=∠A,
∴△CBE∽△AFB.

(2)解:由(1)知,△CBE∽△AFB,
CB
AF
=
BE
FB
=
3
4
,
又AF=2AD,
CB
AD
=
3
2
點評:此題主要考查了相似三角形的判定與性質,根據(jù)已知得出ED∥BF是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

10、如圖,⊙O中,弦AB和CD相交于P,CP=2.5,PD=6,AB=8,那么以AP、PB的長為兩根的一元二次方程是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•畢節(jié)地區(qū))如圖在⊙O中,弦AB=8,OC⊥AB,垂足為C,且OC=3,則⊙O的半徑( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O中,弦AB,CD相交于P,且四邊形OEPF是正方形,連接OP.若⊙O的半徑為5cm,OP=3
2
cm
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O中,弦AB⊥CD于點E.若ON⊥BD于N,求證:ON=
12
AC.

查看答案和解析>>

同步練習冊答案