分析 (1)根據(jù)圓周角定理可得∠BOC=2∠BAC,∠AOB=2∠ACB,再根據(jù)條件∠AOB=2∠BOC可得∠ACB=2∠BAC;
(2)設(shè)∠BAC=x°,則∠OAB=2∠BAC=2x°,再表示出∠AOB=2∠ACB=4∠BAC=4x°,再根據(jù)三角形內(nèi)角和為180°可得方程4x+2x+2x=180,再解即可得x的值,進(jìn)而可得答案.
解答 (1)證明:在⊙O中,
∵∠AOB=2∠ACB,∠BOC=2∠BAC,
∵∠AOB=2∠BOC.
∴∠ACB=2∠BAC.
(2)解:設(shè)∠BAC=x°.
∵AC平分∠OAB,
∴∠OAB=2∠BAC=2x°,
∵∠AOB=2∠ACB,∠ACB=2∠BAC,
∴∠AOB=2∠ACB=4∠BAC=4x°,
在△OAB中,
∠AOB+∠OAB+∠OBA=180°,
∴4x+2x+2x=180,
解得:x=22.5,
∴∠AOC=6x°=135°.
點(diǎn)評 此題主要考查了圓周角定理,關(guān)鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
日期 | 摘要 | 幣種 | 存/取款金額 | 余額 | 操作員 | 備注 |
151101 | 北京水費(fèi) | RMB鈔 | -125.45 | 874.55 | 010005B25 | 折 |
160101 | 北京水費(fèi) | RMB鈔 | -136.02 | 738.53 | 010005Y03 | 折 |
160301 | 北京水費(fèi) | RMB鈔 | -132.36 | 606.17 | 010005D05 | 折 |
160501 | 北京水費(fèi) | RMB鈔 | -128.59 | 477.58 | 01000K19 | 折 |
A. | 738.53元 | B. | 125.45元 | C. | 136.02元 | D. | 477.58元 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com