已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F,H是BC邊的中點(diǎn),連接DH與BE相交于點(diǎn)G.
(1)求證:BF=AC;
(2)求證:CE=BF;
(3)CE與BG的大小關(guān)系如何?試證明你的結(jié)論.
(1)證明:∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形.
∴BD=CD.
∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,
∴∠DBF=∠DCA.
在Rt△DFB和Rt△DAC中,
∵
∴Rt△DFB≌Rt△DAC(ASA).
∴BF=AC;
(2)證明:∵BE平分∠ABC,
∴∠ABE=∠CBE.
在Rt△BEA和Rt△BEC中
,
∴Rt△BEA≌Rt△BEC(ASA).
∴CE=AE=AC.
又由(1),知BF=AC,
∴CE=AC=BF;
(3)證明:∠ABC=45°,CD垂直AB于D,則CD=BD.
H為BC中點(diǎn),則DH⊥BC(等腰三角形“三線合一”)
連接CG,則BG=CG,∠GCB=∠GBC=∠ABC=×45°=22.5°,∠EGC=45°.
又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.
∵△GEC是直角三角形,
∴CE2+GE2=CG2,
∵DH垂直平分BC,
∴BG=CG,
∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=CE,
∴BG>CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)求出△ABC的面積;
(2)在圖中作出△ABC關(guān)于y軸的對(duì)稱(chēng)圖形△A1B1C1;
(3)寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
當(dāng)1<a<2時(shí),代數(shù)式|a﹣2|+|1﹣a|的值是( 。
A. ﹣1 B. 1 C. 3 D. ﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知一個(gè)三角形的周長(zhǎng)為18cm,且它的角平分線的交點(diǎn)到一邊的距離是2.5cm,則這個(gè)三角形的面積是( 。
A. 22.5cm2 B. 19cm2 C. 21cm2 D. 23.5cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知左右并排的兩棵樹(shù)高分別是AB=8m,CD=12m,兩樹(shù)的根部的距離BD=5m,小明眼睛離地面的高度EF為1.6m,他沿著正對(duì)這兩棵樹(shù)的一條水平直路從左到右前進(jìn),當(dāng)他與左邊較低的樹(shù)的距離小于多少時(shí),就不能看到右邊較高的樹(shù)的頂端點(diǎn)C?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com