我們已經(jīng)學(xué)習(xí)了一元二次方程的四種解法:直接開(kāi)平方法、配方法、公式法和因式分解法.請(qǐng)從以下一元二次方程中任選一個(gè),并選擇你認(rèn)為適當(dāng)?shù)姆椒ń膺@個(gè)方程.
①x2-3x+1=0;    ②(x-1)2=3;    ③x2-3x=0;     ④x2-2x=4.
我選擇
①或②或③或④
①或②或③或④
分析:若選擇①,觀察方程發(fā)現(xiàn)利用公式法較簡(jiǎn)單,找出相應(yīng)的a,b及c,計(jì)算出根的判別式,判斷根的判別式大于0,故方程有解,從而把a(bǔ),b及c代入求根公式即可求出方程的解;
若選擇②,利用直接開(kāi)平方法較簡(jiǎn)單,根據(jù)平方根的定義,x-1為3的平方根,轉(zhuǎn)化為兩個(gè)一元一次方程,求出兩方程的解即為原方程的解;
若選擇③,利用因式分解法較簡(jiǎn)單,方程左邊提取x,變?yōu)榉e的形式,根據(jù)兩數(shù)之積為0,兩數(shù)中至少有一個(gè)為0轉(zhuǎn)化為兩個(gè)一元一次方程,求出兩方程的解即為原方程的解;
若選擇④,利用配方法較簡(jiǎn)單,方程左右兩邊同時(shí)加上1,左邊變?yōu)橥耆椒绞剑疫厼榉秦?fù)常數(shù),開(kāi)方即可求出原方程的解.
解答:解:若選擇①,
①適合公式法,
x2-3x+1=0,
∵a=1,b=-3,c=1,
∴b2-4ac=9-4=5>0,
x1=
3+
5
2
x2=
3-
5
2
;
若選擇②,
②適合直接開(kāi)平方法,
(x-1)2=3,
x-1=±
3
,
x1=1+
3
,x2=1-
3
;
若選擇③,
③適合因式分解法,
x2-3x=0,
因式分解得:x(x-3)=0,
解得:x1=0,x2=3;
若選擇④,
④適合配方法,
x2-2x=4,
x2-2x+1=4+1=5,
即(x-1)2=5,
開(kāi)方得:x-1=±
5
,
x1=1+
5
,x2=1-
5

故答案為:①或②或③或④
點(diǎn)評(píng):此題考查了一元二次方程的解法,其解法分別為:直接開(kāi)方法,因式分解法,公式法,以及配方法,應(yīng)根據(jù)方程的特點(diǎn),選擇合適的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們已經(jīng)學(xué)習(xí)了一元二次方程的很多種解法:例如因式分解法,開(kāi)平方法,配方法和公式法等.請(qǐng)從一下一元二次方程中任選一個(gè)進(jìn)行解決,并說(shuō)明你解決這個(gè)方程的方法以及思路.
①x2-3x+1=0;
②(x-1)2=3;
③x2-3x=0;
④x2-2x=4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們已經(jīng)學(xué)習(xí)了一元二次方程的四種解法:因式分解法,開(kāi)平方法,配方法和公式法.請(qǐng)你選擇適當(dāng)?shù)姆椒ń庀旅嫠膫(gè)方程.
(1)x2-3x+1=0; (2)(x-1)2=3; (3)x2-3x=0; (4)x2-2x=4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)我們已經(jīng)學(xué)習(xí)了一元二次方程的四種解法:因式分解法,開(kāi)平方法,配方法和公式法.請(qǐng)從以下一元二次方程中任選一個(gè),并選擇你認(rèn)為適當(dāng)?shù)姆椒ń膺@個(gè)方程:
①x2-3x+1=0;
②(x-1)2=3;
③x2-3x=0;
④x2-2x=4.
(2)用指定的方法解下列一元二次方程:
①x2+3x-10=0(用配方法);
②4y2-7y+2=0(用公式法);
③2x2-7x+3=O(用因式分解法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們已經(jīng)學(xué)習(xí)了一元二次方程的多種解法:如因式分解法,開(kāi)平方法,配方法和公式法,還可以運(yùn)用十字相乘法,請(qǐng)從以下一元二次方程中任選一個(gè),并選擇你認(rèn)為適當(dāng)?shù)姆椒ń膺@個(gè)方程.
①x2-4x-1=0
②x(2x+1)=8x-3
③x2+3x+1=0
④x2-9=4(x-3)
我選擇第
①或②或③或④
①或②或③或④
個(gè)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案