【題目】如圖,在中,,對角線,點E是線段BC上的動點,連接DE,過點D作DP⊥DE,在射線DP上取點F,使得,連接CF,則周長的最小值為___________.
【答案】
【解析】
過D作DG⊥BC于點G,過F作FH⊥DG于點H,利用tan∠DBC=和BD=10可求出DG和BG的長,然后求出CD的長,可知△DCF周長最小,即CF+DF最小,利用“一線三垂直”得到△HDF∽△GED,然后根據(jù)對應邊成比例推出FH=2GD,可知F在DG右側(cè)距離2DG的直線上,作C點關(guān)于直線的對稱點C',連接DC',DC'的長即為CF+DF的最小值,利用勾股定理求出DC',則CD+DC'的長即為周長最小值.
如圖,過D作DG⊥BC于點G,過F作FH⊥DG于點H,
∵tan∠DBC=,BD=10,設DG=x,BG=2x
∴,解得
∴DG=,BG=
∴GC=BC-BG=
∴CD=
△DCF周長最小,即CF+DF最小
∵∠FDE=90°
∴∠HDF+∠GDE=90°
∵∠GED+∠GDE=90°
∴∠HDF=∠GED
又∵∠DHF=∠EGD=90°
∴△HDF∽△GED
∴
∴FH=2GD=
即F在DG右側(cè)距離的直線上運動,如圖所示,
作C點關(guān)于直線的對稱點C',連接DC',DC'的長即為CF+DF的最小值
∵DG⊥BC,FH⊥DG,FO⊥CC'
∴四邊形HFOG為矩形,
∴OG=HF=
又∵GC=
∴OC=OC'=
∴GC'=
在Rt△DGC'中,DC'=
∴△DCF周長的最小值=CD+DC'=
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】隨著經(jīng)濟的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注.某校學生會為了了解垃圾分類知識的普及情況,隨機調(diào)查了部分學生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,并將調(diào)查結(jié)果繪制成下面兩幅統(tǒng)計圖.
(1)求:本次被調(diào)查的學生有多少名?補全條形統(tǒng)計圖.
(2)估計該校1200名學生中“非常了解”與“了解”的人數(shù)和是多少.
(3)被調(diào)查的“非常了解”的學生中有2名男生,其余為女生,從中隨機抽取2人在全校做垃圾分類知識交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D是以AB為直徑的⊙O上一點,過點B作⊙O的切線,交AD的延長線于點C,E為BC的中點,連接DE交BA的延長線于點F.
(1)求證:DE是⊙O的切線;
(2)若OA=AF,DF=4,求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,CD平分∠ACB交⊙O于D,過點D作PQ∥AB分別交CA、CB延長線于P、Q,連接BD.
(1)求證:PQ是⊙O的切線;
(2)求證:BD2=ACBQ;
(3)若AC、BQ的長是關(guān)于x的方程的兩實根,且tan∠PCD=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】襄陽市精準扶貧工作已進入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質(zhì)水果藍莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y元/千克,y關(guān)于x的函數(shù)解析式為 且第12天的售價為32元/千克,第26天的售價為25元/千克.已知種植銷售藍莓的成木是18元/千克,每天的利潤是W元(利潤=銷售收入﹣成本).
(1)m= ,n= ;
(2)求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?
(3)在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,點B的坐標為,過點B分別作x軸、y軸垂線,垂足分別是C,A,反比例函數(shù)的圖象交AB,BC分別于點E,F.
(1)求直線EF的解析式.
(2)求四邊形BEOF的面積.
(3)若點P在y軸上,且是等腰三角形,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下圖,從地面E點測得地下停車場的俯角為30°,斜坡AE的長為16米.地面B點(與E點在同一個水平線)距停車場頂部C點(A、C、B在同一條直線上且與水平線垂直)1.2米.試求該校地下停車場的高度AC及限高CD(結(jié)果精確到0.1米,).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于點,點,與y軸交于點C,且過點.點P、Q是拋物線上的動點.
(1)求拋物線的解析式;
(2)當點P在直線OD下方時,求面積的最大值.
(3)直線OQ與線段BC相交于點E,當與相似時,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①拋物線y=ax2+bx+3(a≠0)與x軸,y軸分別交于點A(﹣1,0),B(3,0),點C三點.
(1)試求拋物線的解析式;
(2)點D(2,m)在第一象限的拋物線上,連接BC,BD.試問,在對稱軸左側(cè)的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標;如果不存在,請說明理由;
(3)點N在拋物線的對稱軸上,點M在拋物線上,當以M、N、B、C為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com