閱讀理解:一張矩形紙片,剪下一個(gè)正方形,剩下一個(gè)矩形,稱為第一次操作;在剩下的矩形紙片中再剪下一個(gè)正方形,剩下一個(gè)矩形,稱為第二次操作;…;若在第n次操作后,剩下的矩形為正方形,則稱原矩形為n階奇異矩形.如圖1,矩形ABCD中,若AB=3,BC=9,則稱矩形ABCD為2階奇異矩形.

(1)判斷與操作:
如圖2,矩形ABCD長為7,寬為3,它是奇異矩形嗎?如果是,請寫出它是幾階奇異矩形,并在圖中畫出裁剪線;如果不是,請說明理由.
(2)探究與計(jì)算:
已知矩形ABCD的一邊長為20,另一邊長為a(a<20),且它是3階奇異矩形,請畫出矩形ABCD及裁剪線的示意圖,并在圖的下方寫出a的值.
圖形見解析.

試題分析:(1)根據(jù)已知操作步驟畫出即可;
(2)根據(jù)已知得出符合條件的有4種情況,畫出圖形即可.
試題解析:(1)矩形ABCD是3階奇異矩形,裁剪線的示意圖如下:

(2)裁剪線的示意圖如下:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平行四邊形ABCD中,平分,交于點(diǎn)平分,交于點(diǎn)交于點(diǎn),連接,.
(1)求證:四邊形是菱形;
(2)若,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,現(xiàn)有一張邊長為4的正方形紙片,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合)將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當(dāng)點(diǎn)P在邊AD上移動時(shí),△PDH的周長是否發(fā)生變化?并證明你的結(jié)論;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正方形ABCD的邊長是2,E是AB的中點(diǎn),延長BC到點(diǎn)F使CF=AE.
(1)求證:
(2)把向左平移,使重合,得于點(diǎn).請判斷AH與ED的位置關(guān)系,并說明理由.
(3)求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀理解:如圖,已知直線m∥n,A、B 為直線n上兩點(diǎn),C、D為直線m上兩點(diǎn),容易證明:△ABC的面積=△ABD的面積.
根據(jù)上述內(nèi)容解決以下問題:
已知正方形ABCD的邊長為4,G是邊CD上一點(diǎn),以CG為邊作正方形GCEF.
(1)如圖(2), 當(dāng)點(diǎn)G是CD的中點(diǎn)時(shí),△BDF的面積為      
(2)如圖(3), 當(dāng)CG = a時(shí), 則△BDF的面積為      ,并說明理由.

探索應(yīng)用:小張家有一塊長方形的土地如圖(4),由于修建高速公路被占去一塊三角形BCP區(qū)域.現(xiàn)決定在DP右側(cè)補(bǔ)給小張一塊土地,補(bǔ)償后,土地變?yōu)樗倪呅蜛BMD,要求補(bǔ)償后的四邊形ABMD的面積與原來形長方形ABCD的面積相等且M在射線BP上,請你在圖中畫出M點(diǎn)的位置,并簡要敘述做法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將下列圖形繞其對角線的交點(diǎn)逆時(shí)針旋轉(zhuǎn)900,所得圖形一定與原圖形重合的是
A.正方形B.矩形C.菱形D.平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

矩形的面積為12cm,一邊長是4cm,那么對角線長是___     ____;已知菱形兩條對角線的長分別為5cm和8cm,則這個(gè)菱形的面積是______cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,菱形ABCD的周長是20,對角線AC,BD相交于點(diǎn)O,若BD=6,則菱形ABCD的面積是(   )
A.6B.12C.24D.48

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在矩形中,點(diǎn)A的坐標(biāo)是(-2,1),點(diǎn)C的縱坐標(biāo)是4,則B、C兩點(diǎn)的坐標(biāo)為(  )

A.(,)、(,)             B.()、(
C.(,)、(,)              D.(,) 、(,

查看答案和解析>>

同步練習(xí)冊答案