【題目】在正方形ABCD中,AB=6,E為直線AB上一點(diǎn),EF⊥AB交對(duì)角線AC于F,點(diǎn)G為AF中點(diǎn),連接CE,點(diǎn)M為CE中點(diǎn),連接BM并延長(zhǎng)交直線AC于點(diǎn)O.
(1)如圖1,E在邊AB上時(shí),= ,∠GBM= ;
(2)將(1)中△AEF繞A逆時(shí)針旋轉(zhuǎn)任意一銳角,其他條件不變,如圖2,(1)中結(jié)論是否任然成立?請(qǐng)加以證明.
(3)若BE=2,則CO長(zhǎng)為 .
【答案】(1),45°;(2)成立,理由見解析;(3)或3.
【解析】
(1)連結(jié)EG、GM.想辦法證明△GBM是等腰直角三角形即可解決問題.
(2)成立.延長(zhǎng)GM到H,使得MH=GM,連接BH,HC,延長(zhǎng)HC交AF的延長(zhǎng)線于I,設(shè)AI交CD于J.利用全等三角形的性質(zhì)證明△GBM是等腰直角三角形即可解決問題.
(3)分兩種情形①點(diǎn)E在線段AB上.②點(diǎn)E在AB的延長(zhǎng)線上,分別求解即可解決問題.
解:(1)連結(jié)EG、GM.
∵四邊形ABCD是正方形,
∴∠ABC=90°,∠CAB=∠ACB=45°,
∵EF⊥AB,
∴∠AEF=90°,
∴∠EAF=∠EFA=45°,
∵AG=GF,
∴EG⊥AF,
∴∠EGC=90°
∵EM=MC,
∴GM=BM=CE,
∴∠MCG=∠MGC,∠MBC=∠MCB,
∴∠BMG=∠BME+∠GME=2∠BMC+2∠GCM=2∠ACB=90°.
故△GMB為等腰直角三角形.
∴.
故答案為,45°.
(2)成立.
理由:延長(zhǎng)GM到H,使得MH=GM,連接BH,HC,延長(zhǎng)HC交AF的延長(zhǎng)線于I,設(shè)AI交CD于J.
∵EM=MC,GM=MH,∠EMG=∠HMC,
∴△EMG≌△CMH(SAS),
∴EG=CH,∠EGM=∠MHC,
∴EC∥CH,
∴∠AGE=∠AIH=90°,
∵AG=EG,
∴AG=CH,
∵∠D=∠I=90°,∠AJD=∠CJI,
∴∠ICD=∠IAD,
∵∠BAG+∠IAD=90°,∠BCH+∠ICF=90°
∴∠BCH=∠BAG,
∵BA=BC
∴△BAG≌△BCH(SAS),
∴BG=DH,∠ABG=∠CBH,
∴∠∠GBH=∠ABC=90°
故△GBH是等腰直角三角形,
∴,∠GBM=45°.
(3)當(dāng)E在B上方時(shí),如圖3﹣1中,延長(zhǎng)BO交CD于T.
∴BE∥CT,
∴∠MEB=∠MCT,
∵∠EMB=∠CMT,EM=CM,
∴△EMB≌△CMT(ASA),
∴BE=CT=2,
∵CT∥AB,
∴ ,
∵AC=6,
∴OC=×6
∴CO=
當(dāng)E在B下方時(shí)同法可得CO=3.
綜上所述,OC的長(zhǎng)為或3.
故答案為或3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=ax+b與y=bx+a的圖象在同一坐標(biāo)系內(nèi)的大致位置正確的是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用如圖所示的卡片拼成一個(gè)長(zhǎng)為(2a+3b),寬為(a+b)的長(zhǎng)方形,則需要(1)型卡片、(2)型卡片和(3)型卡片的張數(shù)分別是( )
A. 2,5,3B. 2,3,5C. 3,5,2D. 3,2,5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列各題
(1)(x3)2.(﹣x4)3
(2)(x5y4﹣x4y3)x3y3
(3)(2a+1)2﹣(2a+1)(2a﹣1)
(4)102+×(π﹣3.14)0﹣|﹣302|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,已知點(diǎn)A(0,10),點(diǎn)P(m,10),連接AP、OP,將△AOP沿直線OP翻折得到△EOP(點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)E).若點(diǎn)E到x軸的距離不大于6,則m的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+4交y軸于點(diǎn)A,與直線BC相交于點(diǎn)B(-2,m),直線BC與y軸交于點(diǎn)C(0,-2),與x軸交于點(diǎn)D.
(1)求點(diǎn)B坐標(biāo);
(2)求△ABC的面積
(3)過點(diǎn)A作BC的平行線交x軸于點(diǎn)E,求點(diǎn)E的坐標(biāo);
(4)在(3)的條件下,點(diǎn)p是直線AB上一動(dòng)點(diǎn)且在x軸上方,Q為直角坐標(biāo)平面內(nèi)一點(diǎn),如果以點(diǎn)D、E、P、Q為頂點(diǎn)的平行四邊形的面積等于△ABC面積請(qǐng)求出點(diǎn)P的坐標(biāo).并直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=26cm,BC=20cm,D是AB的中點(diǎn),過D作DE⊥AC于E,則DE的長(zhǎng)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別為AB,AC邊上的中點(diǎn),連接DE,將△ADE繞點(diǎn)E旋轉(zhuǎn)180°得到△CFE,連接AF,AC.
(1)求證:四邊形ADCF是菱形;
(2)若BC=8,AC=6,求四邊形ABCF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在平行四邊形ABCD中,E為BC邊上一點(diǎn),連結(jié)AE、BD且AE=AB
(1)求證:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com