【題目】如圖,在△ABC中,B=90°,AB=12mm,BC=24mm,動點(diǎn)P從點(diǎn)A開始沿邊ABB2mm/s的速度移動(不與點(diǎn)B重合),動點(diǎn)Q從點(diǎn)B開始沿邊BCC4mm/s的速度移動(不與點(diǎn)C重合).如果P、Q分別從A、B同時出發(fā),設(shè)運(yùn)動的時間為xs,四邊形APQC的面積為ymm2

(1)yx之間的函數(shù)關(guān)系式;

(2)求自變量x的取值范圍;

(3)四邊形APQC的面積能否等于172mm2.若能,求出運(yùn)動的時間;若不能,說明理由.

【答案】(1)y=4t2﹣24t+144;(2)0<t<6.(3)不能,理由見解析.

【解析】

(1)利用兩個直角三角形的面積差求得答案即可;
(2)利用線段的長度與運(yùn)動速度建立不等式得出答案即可;
(3)利用(1)的函數(shù)建立方程求解判斷即可.

(1)∵出發(fā)時間為,點(diǎn)P的速度為2mm/s,點(diǎn)Q的速度為4mm/s

PB=12﹣2,BQ=4

y×12×24﹣×(12﹣2)×4

=42﹣24+144.

(2)>0,12﹣2>0,

0<<6.

(3)不能,

42﹣24+144=172,

解得:1=7,2=﹣1(不合題意,舍去)

因?yàn)?/span>0<x<6.所以=7不在范圍內(nèi),

所以四邊形APQC的面積不能等于172mm2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx2+2x+a2,當(dāng)xm時,函數(shù)值y<0,則當(dāng)xm+2時,函 數(shù)值y( 。

A. 小于 B. 等于0 C. 大于0 D. 與0的大小不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓O的直徑DE=10cm,ABC中,∠ACB=90°,ABC=30°,BC=10cm,半圓O1cm/s的速度從右到左運(yùn)動,在運(yùn)動過程中,D、E點(diǎn)始終在直線BC上,設(shè)運(yùn)動時間為t(s),當(dāng)t=0(s)時,半圓OABC的右側(cè),OC=6cm,那么,當(dāng)t_____s時,ABC的一邊所在直線與半圓O所在的圓相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是雙曲線y=(x>0)上的一動點(diǎn),過A作AC⊥y軸,垂足為點(diǎn)C,作AC的垂直平分線交雙曲線于點(diǎn)B,交x軸于點(diǎn)D.當(dāng)點(diǎn)A在雙曲線上從左到右運(yùn)動時,對四邊形ABCD的面積的變化情況,小明列舉了四種可能:

①逐漸變;

②由大變小再由小變大;

③由小變大再由大變小;

④不變.

你認(rèn)為正確的是_____.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=(k0)的圖象經(jīng)過點(diǎn)A(﹣2,m),過點(diǎn)AABx軸于點(diǎn)B,且△AOB的面積為4.

(Ⅰ)求km的值;

(Ⅱ)設(shè)C(x,y)是該反比例函數(shù)圖象上一點(diǎn),當(dāng)1x4時,求函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在△ABC中,DBC邊上的一點(diǎn),EAD的中點(diǎn),過點(diǎn)ABC的平行線交與BE的延長線于點(diǎn)F,且AF=DC,連結(jié)CF

1)求證:四邊形ADCF是平行四邊形;

2)當(dāng)ABAC有何數(shù)量關(guān)系時,四邊形ADCF為矩形,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為美化環(huán)境,某校計(jì)劃在一塊長為60米,寬為40米的長方形空地上修建一個長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為a米.

1)當(dāng)a=10米時,花圃的面積=

2)通道的面積與花圃的面積之比能否恰好等于3:5,如果可以,求出此時通道的寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P為拋物線為常數(shù),)上任意一點(diǎn),將拋物線繞頂點(diǎn)G逆時針旋轉(zhuǎn)90°后得到的圖象與軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的上方),點(diǎn)Q為點(diǎn)P旋轉(zhuǎn)后的對應(yīng)點(diǎn).

1)拋物線的對稱軸是直線________,當(dāng)m=2時,點(diǎn)P的橫坐標(biāo)為4時,點(diǎn)Q的坐標(biāo)為_________;

2)設(shè)點(diǎn)Q請你用含m,的代數(shù)式表示________;

3)如圖,點(diǎn)Q在第一象限,點(diǎn)D軸的正半軸上,點(diǎn)COD的中點(diǎn),QO平分∠AQC,當(dāng)AQ=2QC,QD=時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,過點(diǎn)O作弦AD的垂線交半圓O于點(diǎn)E,交AC于點(diǎn)C,使BED=C.

(1)判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論;

(2)若AC=8,cosBED=,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案