【題目】安九高鐵潛山段有甲、乙兩個(gè)施工隊(duì),現(xiàn)中標(biāo)承建安九高鐵一段建設(shè)工程.若讓兩隊(duì)合作,天可以完工,需要費(fèi)用萬元;若讓兩隊(duì)合作天后,剩下的工程由甲隊(duì)做,還需天才能完成,這樣只需要費(fèi)用萬元.

1)甲、乙兩隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?

2)甲、乙兩隊(duì)單獨(dú)完成此項(xiàng)工程各需費(fèi)用多少萬元?

【答案】1)甲,乙兩隊(duì)單獨(dú)完成該項(xiàng)工作分別需60,90天;(2)甲、乙兩隊(duì)單獨(dú)完成此項(xiàng)工程各需費(fèi)用60萬元,360萬元.

【解析】

1)設(shè)甲,乙兩隊(duì)單獨(dú)完成該項(xiàng)工作分別需,天,根據(jù)若讓兩隊(duì)合作,天可以完工;若讓兩隊(duì)合作天后,剩下的工程由甲隊(duì)做,還需天才能完成列出方程組,求解即可;

2)設(shè)甲每天需要費(fèi)用萬元,乙每天需要費(fèi)用萬元,根據(jù)題意列出方程組,分別求出甲,乙每天需要的費(fèi)用,結(jié)合(1)中結(jié)果解答即可.

解:(1)設(shè)甲,乙兩隊(duì)單獨(dú)完成該項(xiàng)工作分別需,.

由題意得:

解這個(gè)方程組得,

經(jīng)檢驗(yàn)得是原方程的解

答:甲,乙兩隊(duì)單獨(dú)完成該項(xiàng)工程分別需60天,90天;

2)設(shè)甲每天需要費(fèi)用萬元,乙每天需要費(fèi)用萬元,

由題意得:

解得

∴甲單獨(dú)完成此項(xiàng)工程需費(fèi)用1×60=60(萬元),

乙單獨(dú)完成此項(xiàng)工程需費(fèi)用4×90=360(萬元),

答:甲、乙兩隊(duì)單獨(dú)完成此項(xiàng)工程各需費(fèi)用60萬元,360萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點(diǎn)B旋轉(zhuǎn)得到矩形GBEF.

1)觀察發(fā)現(xiàn):在旋轉(zhuǎn)的過程中, 的值不變,這個(gè)數(shù)值是   ;

(2)問題解決:當(dāng)點(diǎn)G落在直線CD上時(shí),求CE的長;

(3)數(shù)學(xué)思考:在旋轉(zhuǎn)的過程中,CE是否有最大值,如果有,請(qǐng)直接寫出;如果沒有,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:將邊長為的正三角形的三條邊分別等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個(gè)?

探究:要研究上面的問題,我們不妨先從最簡單的情形入手,進(jìn)而找到一般性規(guī)律.

探究一:將邊長為2的正三角形的三條邊分別二等分,連接各邊中點(diǎn),則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個(gè)?

如圖①,連接邊長為2的正三角形三條邊的中點(diǎn),從上往下看:

邊長為1的正三角形,第一層有1個(gè),第二層有3個(gè),共有個(gè);

邊長為2的正三角形一共有1個(gè).

探究二:將邊長為3的正三角形的三條邊分別三等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個(gè)?

如圖②,連接邊長為3的正三角形三條邊的對(duì)應(yīng)三等分點(diǎn),從上往下看:邊長為1的正三角形,第一層有1個(gè),第二層有3個(gè),第三層有5個(gè),共有個(gè);邊長為2的正三角形共有個(gè).

探究三:將邊長為4的正三角形的三條邊分別四等分(圖③),連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個(gè)?

(仿照上述方法,寫出探究過程)

結(jié)論:將邊長為的正三角形的三條邊分別等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個(gè)?

(仿照上述方法,寫出探究過程)

應(yīng)用:將一個(gè)邊長為25的正三角形的三條邊分別25等分,連接各邊對(duì)應(yīng)的等分點(diǎn),則該三角形中邊長為1的正三角形有______個(gè)和邊長為2的正三角形有______個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《代數(shù)學(xué)》中記載,形如x2+8x33的方程,求正數(shù)解的幾何方法是:“如圖1,先構(gòu)造一個(gè)面積為x2的正方形,再以正方形的邊長為一邊向外構(gòu)造四個(gè)面積為2x的矩形,得到大正方形的面積為33+1649,則該方程的正數(shù)解為743.”小聰按此方法解關(guān)于x的方程x2+10x+m0時(shí),構(gòu)造出如圖2所示的圖形,已知陰影部分的面積為50,則該方程的正數(shù)解為( 。

A.6B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】開學(xué)初,李芳和王平去文具店購買學(xué)習(xí)用品,李芳用18元錢買了1支鋼筆和3本筆記本;王平用30元買了同樣的鋼筆2支和筆記本4本.

(1)求每支鋼筆和每本筆記本的價(jià)格;

(2)校運(yùn)會(huì)后,班主任拿出200元學(xué)校獎(jiǎng)勵(lì)基金交給班長,購買上述價(jià)格的鋼筆筆記本共36件作為獎(jiǎng)品,獎(jiǎng)給校運(yùn)會(huì)中表現(xiàn)突出的同學(xué),要求筆記本數(shù)不多于鋼筆數(shù)的2倍,共有多少種購買方案?請(qǐng)你一一寫出.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于第一、三象限內(nèi)的,兩點(diǎn),與軸交于點(diǎn)

1)求該反比例函數(shù)和一次函數(shù)的解析式;

2)直接寫出當(dāng)時(shí),的取值范圍;

3)在軸上找一點(diǎn)使最大,求的最大值及點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的方格中,每個(gè)小正方形的邊長都為1,△ABC的頂點(diǎn)均在格點(diǎn)上.在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)為(1,2)

1)把△ABC向下平移8個(gè)單位后得到對(duì)應(yīng)的△A1B1C1,畫出△A1B1C1,并寫出A1坐標(biāo)是   

2)以原點(diǎn)O為對(duì)稱中心,畫出與△ABC關(guān)于原點(diǎn)O對(duì)稱的△A2B2C2,并寫出B2坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角ABC中,D,E分別為AB,BC中點(diǎn),FAC上一點(diǎn),且∠AFE=A,DMEFAC于點(diǎn)M

1)點(diǎn)GBE上,且∠BDG=C,求證:DGCF=DMEG;

2)在圖中,取CE上一點(diǎn)H,使∠CFH=B,若BG=1,求EH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,將沿翻折得到,射線與射線相交于點(diǎn),若是等腰三角形,則的度數(shù)為__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案