【題目】如圖,拋物線過原點,且與軸交于點.
(1)求拋物線的解析式及頂點的坐標(biāo);
(2)已知為拋物線上一點,連接,,,求的值;
(3)在第一象限的拋物線上是否存在一點,過點作軸于點,使以,,三點為頂點的三角形與相似,若存在,求出滿足條件的點的坐標(biāo);若不存在,請說明理由.
【答案】(1)拋物線的解析式為;頂點的坐標(biāo)為;(2)3;(3)點的坐標(biāo)為或.
【解析】
(1)用待定系數(shù)法即可求出拋物線的解析式,進(jìn)而即可求出頂點坐標(biāo);
(2)先將點C的橫坐標(biāo)代入拋物線的解析式中求出縱坐標(biāo),根據(jù)B,C的坐標(biāo)得出,,從而有,最后利用求解即可;
(3)設(shè)為.由于,所以當(dāng)以,,三點為頂點的三角形與相似時,分兩種情況:或,分別建立方程計算即可.
解:(1)∵拋物線過原點,且與軸交于點,
∴,解得.
∴拋物線的解析式為.
∵,
∴頂點的坐標(biāo)為.
(2)∵在拋物線上,
∴.
作軸于,作軸于,
則,,
∴,.
∴.
∵,.
∴.
(3)假設(shè)存在.
設(shè)點的橫坐標(biāo)為,則為.
由于,
所以當(dāng)以,,三點為頂點的三角形與相似時,
有或
∴ 或.
解得或.
∴存在點,使以,,三點為頂點的三角形與相似.
∴點的坐標(biāo)為或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,AD∥BC,DE與AB交于點F,已知AD=4,DF=2EF,sin∠DAB=,則線段DE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線:()與,軸分別交于,兩點,以為邊在直線的上方作正方形,反比例函數(shù)和的圖象分別過點和點.若,則的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6cm,AD=8cm,點P從點A出發(fā),以每秒一個單位的速度沿A→B→C的方向運動;同時點Q從點B出發(fā),以每秒2個單位的速度沿B→C→D的方向運動,當(dāng)其中一點到達(dá)終點后兩點都停止運動.設(shè)兩點運動的時間為t秒.
(1)當(dāng)t= 時,兩點停止運動;
(2)設(shè)△BPQ的面積面積為S(平方單位)
①求S與t之間的函數(shù)關(guān)系式;
②求t為何值時,△BPQ面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知、、、、是上五點,的直徑,.為的中點,延長到點.使,連接.
(1)求線段的長;
(2)求證:直線是的切線.
(3)如圖,連交于點,延長交PO交于另一點,連、,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線上部分點的橫坐標(biāo),縱坐標(biāo)的對應(yīng)值如下表:
-3 | -2 | -1 | 0 | 1 | |||
0 | 4 | 3 | 0 |
(1)把表格填寫完整;
(2)根據(jù)上表填空:
①拋物線與軸的交點坐標(biāo)是________和__________;
②在對稱軸右側(cè),隨增大而_______________;
③當(dāng)時,則的取值范圍是_________________;
(3)請直接寫出拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個矩形苗圃,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃垂直于墻的一邊長為x米.
(1)若苗圃的面積為72平方米,求x的值;
(2)這個苗圃的面積能否是120平方米?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》記載“今有邑方不知大小,各中開門.出北門三十步有木,出西門七百五十步見木.問邑方有幾何?”意思是:如圖,點M、點N分別是正方形ABCD的邊AD、AB的中點,ME⊥AD,NF⊥AB,EF過點A,且ME=30步,NF=750步,則正方形的邊長為( 。
A. 150步B. 200步C. 250步D. 300步
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com