【題目】為響應(yīng)足球進校園的號召,我縣教體局在今年 11 月份組織了縣長杯校園足球比賽.在某場比賽中,一個球被從地面向上踢出,它距地面的高度 h(m)可用公式 h=﹣5t2+v0t 表示,其中 t(s)表示足球被踢出后經(jīng)過的時間,v0(m/s)是足球被踢出時的速度,如果足球的最大高度到 20m,那么足球被踢出時的速度應(yīng)達到________m/s.

【答案】20

【解析】

因為﹣5<0,拋物線開口向下,有最大值,根據(jù)頂點坐標(biāo)公式表示函數(shù)的最大值,根據(jù)題目對最大值的要求,求待定系數(shù)v0

h=﹣5t2+v0t,其對稱軸為t,

當(dāng)t時,h最大=﹣5×(2+v0=20,

解得:v0=20,v0=﹣20(不合題意舍去),

即足球被踢出時的速度應(yīng)達到20m/s

故答案為:20.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,AB是⊙O的直徑,點C在⊙O上,點PAB延長線上一點,連接CP

(1)如圖1,若∠PCB=∠A

①求證:直線PC是⊙O的切線;

②若CPCAOA2,求CP的長;

(2)如圖2,若點M是弧AB的中點,CMAB于點N,MNMC9,求BM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲轉(zhuǎn)盤被分成3個面積相等的扇形、乙轉(zhuǎn)盤被分成2個面積相等的扇形.小夏和小秋利用它們來做決定獲勝與否的游戲.規(guī)定小夏轉(zhuǎn)甲盤一次、小秋轉(zhuǎn)乙盤一次為一次游戲(當(dāng)指針指在邊界線上時視為無效,重轉(zhuǎn)).

(1)小夏說:“如果兩個指針?biāo)竻^(qū)域內(nèi)的數(shù)之和為6或7,則我獲勝;否則你獲勝”.按小夏設(shè)計的規(guī)則,請你寫出兩人獲勝的可能性分別是多少?

(2)請你對小夏和小秋玩的這種游戲設(shè)計一種公平的游戲規(guī)則,并用一種合適的方法(例如:樹狀圖,列表)說明其公平性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,用直尺和圓規(guī)作BAD的平分線AG交BC于點E,若BF=12,AB=10,則AE的長為( )

A.16 B.15 C.14 D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A,B,C的坐標(biāo)分別為(0,2),(3,2),(2,3).

(1)請在圖中畫出△ABC向下平移3個單位的像△A′B′C′;

(2)若一個二次函數(shù)的圖象經(jīng)過(1)中△A′B′C′的三個頂點,求此二次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:

數(shù)學(xué)活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為智慧三角形.

理解:

如圖,已知上兩點,請在圓上找出滿足條件的點,使智慧三角形(畫出點的位置,保留作圖痕跡);

如圖,在正方形中,的中點,上一點,且,試判斷是否為智慧三角形,并說明理由;

運用:

如圖,在平面直角坐標(biāo)系中,的半徑為,點是直線上的一點,若在上存在一點,使得智慧三角形,當(dāng)其面積取得最小值時,直接寫出此時點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將號碼分別為1,2,3,…,9的九個小球放入一個袋中,這些小球僅號碼不同,其余完全相同,甲從袋中摸出一個球,號碼為a,放回后乙再摸出一個球,號碼為b,則使不等式成立的事件發(fā)生的概率為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋子中裝有4個質(zhì)地、大小均相同的小球,這些小球分別標(biāo)有3,4,5,x,甲乙兩人每次同時從袋中各隨機摸出1個小球,并計算摸出的這2個小球上數(shù)字之和,記錄后都將小球放回袋中攪勻,進行重復(fù)試驗,試驗數(shù)據(jù)如圖:

解答下列問題:

(1)如果試驗繼續(xù)進行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“和為8”的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)“和為8”的概率是 .

(2)如果摸出的這兩個小球上的數(shù)字之和為9的概率是,那么x的值可以取7嗎?請用列表法或畫樹狀圖法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為1的正方形,點E在AD邊上運動,且不與點A和點D重合,連結(jié)CE,過點C作CFCE交AB的延長線于點F,EF交BC于點G.

(1)求證:CDE≌△CBF;

(2)當(dāng)DE=時,求CG的長;

(3)連結(jié)AG,在點E運動過程中,四邊形CEAG能否為平行四邊形?若能,求出此時DE的長;若不能,說明理由.

查看答案和解析>>

同步練習(xí)冊答案