【題目】設(shè)a,b是任意兩個(gè)不等實(shí)數(shù),我們規(guī)定:滿足不等式a≤x≤b的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對(duì)于一個(gè)函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時(shí),有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當(dāng)x=1時(shí),y=3;當(dāng)x=3時(shí),y=1,即當(dāng)1≤x≤3時(shí),恒有1≤y≤3,所以說(shuō)函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.

(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請(qǐng)判斷并說(shuō)明理由;

(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;

3)如果(2)所述的二次函數(shù)的圖象交y軸于C點(diǎn),A為此二次函數(shù)圖象的頂點(diǎn),B為直線x=1上的一點(diǎn),當(dāng)ABC為直角三角形時(shí),寫出點(diǎn)B的坐標(biāo).

【答案】(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”(2)t=3(3)當(dāng)ABC為直角三角形時(shí),點(diǎn)B的坐標(biāo)(1,4+),(1,4﹣),(1,),(1,

【解析】分析: (1)由k>0可知反比例函數(shù)y=在閉區(qū)間[1,2016]上y隨x的增大而減小,然后將x=1,x=2018別代入反比例解析式的解析式,從而可求得y的范圍,于是可做出判斷;
(2)先求得二次函數(shù)的對(duì)稱軸為x=1,a=1>0,根據(jù)二次函數(shù)的性質(zhì)可知y=x2-4x+k在閉區(qū)間[2,t]上y隨x的增大而增大,然后將x=2,y=k-4,x=t,y=t2-4t+k分別代入二次函數(shù)的解析式,從而可求得k的值;
(3)根據(jù)勾股定理的逆定理,可得方程,根據(jù)解方程,可得答案.

詳解:

(1)∵k=2018,

當(dāng)1≤x≤2018時(shí),y隨x的增大而減小.

當(dāng)x=1時(shí),y=2018,x=2018時(shí),y=1.

∴1≤y≤2108.

反比例函數(shù)y= 是閉區(qū)間[1,2018]上的“閉函數(shù)”.

(2)∵x=﹣=2,a=1>0,

二次函數(shù)y=x2﹣4x+k在閉區(qū)間[2,t]上y隨x的增大而增大.

二次函數(shù)y=x2﹣2x﹣k是閉區(qū)間[2,t]上的“閉函數(shù)”,

當(dāng)x=2時(shí),y=k﹣4,x=t時(shí),y=t2﹣4t+k.

解得k=6,t=3,t=﹣2,

因?yàn)閠>2,

t=2舍去,

∴t=3.

(3)由二次函數(shù)的圖象交y軸于C點(diǎn),A為此二次函數(shù)圖象的頂點(diǎn),得

A(2,2),C(0,6)設(shè)B(1,t),

由勾股定理,得AC2=22+(2﹣6)2,AB2=(2﹣1)2+(2﹣t)2,BC2=12+(t﹣6)2,

當(dāng)ABC=90°時(shí),AB2+BC2=AC2,即

(2﹣1)2+(2﹣t)2+(t﹣6)2+1=22+(2﹣6)2

化簡(jiǎn),得t2﹣8t+11=0,解得t=4+或t=4﹣,

B(1,4+),(1,4﹣);

當(dāng)BAC=90°是,AB2+AC2=BC2

即(2﹣1)2+(2﹣t)2+22+(2﹣6)2=12+(t﹣6)2,

化簡(jiǎn),得8t=12,

解得t=

B(1,),

當(dāng)ACB=90°時(shí),AC2+CB2=AB2,

即22+(2﹣6)2+12+(t﹣6)2=(2﹣1)2+(2﹣t)2,

化簡(jiǎn),得2t=13,

解得t= ,

B(1,),

綜上所述:當(dāng)ABC為直角三角形時(shí),點(diǎn)B的坐標(biāo)(1,4+),(1,4﹣),(1,),(1,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市提倡“誦讀中華經(jīng)典,營(yíng)造書香校園”的良好誦讀氛圍,促進(jìn)校園文化建設(shè),進(jìn)而培養(yǎng)學(xué)生的良好誦讀習(xí)慣,使經(jīng)典之風(fēng)浸漫校園.某中學(xué)為了了解學(xué)生每周在校經(jīng)典誦讀時(shí)間,在本校隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖表信息解答下列問(wèn)題:

時(shí)間(小時(shí))

頻數(shù)(人數(shù))

頻率

2t3

4

0.1

3t4

10

0.25

4t5

a

0.15

5t6

8

b

6t7

12

0.3

合計(jì)

40

1

1)表中的a   ,b   ;

2)請(qǐng)將頻數(shù)分布直方圖補(bǔ)全;

3)若該校共有1200名學(xué)生,試估計(jì)全校每周在校參加經(jīng)典誦讀時(shí)間至少有4小時(shí)的學(xué)生約為多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點(diǎn)O0,0),點(diǎn)A5,0),點(diǎn)B0,3).以點(diǎn)A為中心,順時(shí)針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點(diǎn)OB,C的對(duì)應(yīng)點(diǎn)分別為DE,F

1)如圖①,當(dāng)點(diǎn)D落在BC邊上時(shí),求點(diǎn)D的坐標(biāo);

2)如圖②,當(dāng)點(diǎn)D落在線段BE上時(shí),ADBC交于點(diǎn)H

①求證ADB≌△AOB;

②求點(diǎn)H的坐標(biāo).

3)記K為矩形AOBC對(duì)角線的交點(diǎn),SKDE的面積,求S的取值范圍(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)綠色出行號(hào)召,越來(lái)越多市民選擇租用共享單車出行已知某共享單車公司為市民提供了手機(jī)支付和會(huì)員卡支付兩種支付方式,如圖描述了兩種方式應(yīng)支付金額y()與騎行時(shí)間x(時(shí))之間的函數(shù)關(guān)系根據(jù)圖象回答下列問(wèn)題:

(1)求手機(jī)支付金額y()與騎行時(shí)間x(時(shí))的函數(shù)關(guān)系式;

(2)李老師經(jīng)常騎行共享單車請(qǐng)根據(jù)不同的騎行時(shí)間幫他確定選擇哪種支付方式比較合算

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】菱形有一個(gè)內(nèi)角是120°,其中一條對(duì)角線長(zhǎng)為9,則菱形的邊長(zhǎng)為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在平面直角坐標(biāo)系,直線分別交、軸于點(diǎn)A、B兩點(diǎn),OA=5,OAB=60°.

(1)如圖1,求直線AB的解析式;

(2)如圖2,點(diǎn)P為直線AB上一點(diǎn),連接OP,點(diǎn)DOA延長(zhǎng)線上,分別過(guò)點(diǎn)P、DOAOP的平行線,兩平行線交于點(diǎn)C,連接AC,設(shè)AD=m,ABC的面積為S,Sm的函數(shù)關(guān)系式;

(3)如圖3,(2)的條件下,PA上取點(diǎn)E ,使PE=AD, 連接EC,DE,若∠ECD=60°,四邊形ADCE的周長(zhǎng)等于22,求S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形ABC中,BD,CE分別是兩腰上的中線.

(1)求證:BD=CE;

(2)設(shè)BDCE相交于點(diǎn)O,點(diǎn)M,N分別為線段BOCO的中點(diǎn),當(dāng)ABC的重心到頂點(diǎn)A的距離與底邊長(zhǎng)相等時(shí),判斷四邊形DEMN的形狀,無(wú)需說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是一個(gè)三角形,分別連接這個(gè)三角形三邊的中點(diǎn)得到圖2;再分別連接圖2中間小三角形的中點(diǎn),得到圖3.(若三角形中含有其它三角形則不記入)

按上面方法繼續(xù)下去,第20個(gè)圖有_____個(gè)三角形;第n個(gè)圖中有_____個(gè)三角形.(用n的代數(shù)式表示結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直線軸交于點(diǎn),與軸交于點(diǎn),與反比例函的圖象交于點(diǎn),且

1)求點(diǎn)的坐標(biāo)和反比例函數(shù)的解析式;

2)點(diǎn)軸上,反比例函數(shù)圖象上存在點(diǎn),使得四邊形為平行四邊形,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案