【題目】(1)某地有兩個村莊M,N,和兩條相交叉的公路OA,OB,現(xiàn)計劃修建一個物資倉庫,希望倉庫到兩個村莊的距離相等,到兩條公路的距離也相等,請你確定該點.
(2)如圖,△ABC繞點C旋轉后,頂點A旋轉到了點D.
①指出這一旋轉的旋轉角;
②畫出旋轉后的三角形.
【答案】(1)見解析;(2)①∠ACD為旋轉角;②見解析.
【解析】
(1)先連接MN,根據(jù)線段垂直平分線的性質作出線段MN的垂直平分線DE,再作出∠AOB的平分線OF,DE與OF相交于P點,則點P即為所求.
(2)①根據(jù)旋轉的性質求解;
②作∠BCE=∠ACD,且CE=CB,則點E為點B的對應點,則△DEC滿足條件.
(1)點P為線段MN的垂直平分線與∠AOB的平分線的交點,則點P到點M、N的距離相等,到AO、BO的距離也相等,作圖如下:
(2)①根據(jù)旋轉的性質可知∠ACD為旋轉角;
②作∠BCE=∠ACD,且CE=CB,則點E為點B的對應點,如圖,△DEC為所作.
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有190張鐵皮做盒子,每張鐵皮可做8個盒身或22個盒底,一個盒身與兩個盒底配成一個完整的盒子,(一張鐵皮只能生產(chǎn)一種產(chǎn)品)
(1)向用多少張鐵皮做盒身,多少張鐵皮做盒底,可以正好用完190張鐵皮并制成一批完整的盒子?
(2)這批盒子一共有多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長為、寬為的全等小矩形,且> .(以上長度單位:cm)
(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;
(2)若每塊小矩形的面積為10,四個正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為支援災區(qū),某校愛心活動小組準備用籌集的資金購買A、B兩種型號的學習用品共1000件.已知B型學習用品的單價比A型學習用品的單價多10元,用180元購買B型學習用品的件數(shù)與用120元購買A型學習用品的件數(shù)相同.
(1)求A、B兩種學習用品的單價各是多少元?
(2)若購買這批學習用品的費用不超過28000元,則最多購買B型學習用品多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=2.Rt△AB′C′可以看作是由Rt△ABC繞A點逆時針方向旋轉60°得到的,求線段 B′C的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
小偉遇到這樣一個問題:如圖1,在正三角形ABC內有一點P,且PA=3,PB=4,PC=5,求∠APB的度數(shù).
小偉是這樣思考的:如圖2,利用旋轉和全等的知識構造△AP′C,連接PP′,得到兩個特殊的三角形,從而將問題解決.
請你回答:圖1中∠APB的度數(shù)等于 .
參考小偉同學思考問題的方法,解決下列問題:
(1)如圖3,在正方形ABCD內有一點P,且PA=,PB=1,PD=,則∠APB的度數(shù)等于 ,正方形的邊長為 ;
(2)如圖4,在正六邊形ABCDEF內有一點P,且PA=2,PB=1,PF=,則∠APB的度數(shù)等于 ,正六邊形的邊長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某村莊計劃建造A,B兩種型號的沼氣池共20個,以解決該村所有農戶的燃料問題.兩種型號沼氣池的占地面積和可供使用農戶數(shù)見下表:
型號 | 占地面積 (單位:m2/個) | 可供使用農戶數(shù) (單位:戶/個) |
A | 15 | 18 |
B | 20 | 30 |
已知可供建造沼氣池的占地面積不超過365m2,該村農戶共有492戶.
(1)如何合理分配建造A,B型號“沼氣池”的個數(shù)才能滿足條件?滿足條件的方案有幾種?通過計算分別寫出各種方案.
(2)請寫出建造A、B兩種型號的“沼氣池”的總費用y和建造A型“沼氣池”個數(shù)x之間的函數(shù)關系式;
(3)若A型號“沼氣池”每個造價2萬元,B型號“沼氣池”每個造價3萬元,試說明在(1)中的各種建造方案中,哪種建造方案最省錢,最少的費用需要多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列有理數(shù)大小關系判斷正確的是( 。
A. 0>|﹣10| B. ﹣(﹣)>﹣|﹣| C. |﹣3|<|+3| D. ﹣1>﹣0.01
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com