【題目】如圖,在△ABC,ABBC,∠ABC90°,BMAC邊中線點(diǎn)D,E分別在邊ACBCDBDE,EFAC于點(diǎn)F以下結(jié)論:①△BMD≌△DFE;②△NBE∽△DBC;③AC2DF;④EFABCFBC,其中正確結(jié)論的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

根據(jù)全等三角形的判定和性質(zhì)及相似三角形的判定和性質(zhì)即可.

解:∵AB=BC∠ABC=90°,BMAC邊中線,

∠MBC=∠C =45°,BM=AM=MC

DBDE,

∠DBE∠DEB

∠DBM+45°=∠CDE+45°.

∠DBM∠CDE.

EFAC,

∠DFE=∠BMD=90°

△BMD△DFE

△BMD△DFE.

故①正確.

由① 可得∠DBE∠DEB,∠MBC∠C

△NBE△DCB

故②錯(cuò),對(duì)應(yīng)字母沒有寫在對(duì)應(yīng)的位置上.

△BMD△DFE,

BM=DF,

BM=AM=MC,

AC=2BM,

AC=2DF.

故③正確

易證△EFC△ABC,所以=,

EFAB=CFBC

故④正確

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某市開展的環(huán)境創(chuàng)優(yōu)活動(dòng)中,某居民小區(qū)要在一塊靠墻(墻長(zhǎng)15米)的空地上修建一個(gè)矩形花園ABCD,花園的一邊靠墻,另三邊用總長(zhǎng)為40m的柵欄圍成,若設(shè)花園平行于墻的一邊長(zhǎng)為x(m),花園的面積為y(m2).

(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)滿足條件的花園面積能達(dá)到200m2嗎?若能,求出此時(shí)x的值,若不能,說明理由;

(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時(shí),花園的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從如圖所示的二次函數(shù))的圖象中,觀察得出了下面5條信息:①;;;.你認(rèn)為其中正確的信息有(

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).

(1)求yx之間的函數(shù)關(guān)系式;

(2)直接寫出當(dāng)x>0時(shí),不等式x+b的解集;

(3)若點(diǎn)Px軸上,連接APABC的面積分成1:3兩部分,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD⊙O的內(nèi)接四邊形,AC⊙O的直徑,DE⊥AB,垂足為E.

(1)延長(zhǎng)DE⊙O于點(diǎn)F,延長(zhǎng)DC,F(xiàn)B交于點(diǎn)P,如圖1.求證:PC=PB;

(2)過點(diǎn)BBG⊥AD,垂足為G,BGDE于點(diǎn)H,且點(diǎn)O和點(diǎn)A都在DE的左側(cè),如圖2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的周長(zhǎng)為30cm,把△ABC的邊AC對(duì)折,使頂點(diǎn)AC重合,折痕交BC邊于點(diǎn)D,交AC邊于點(diǎn)E,若△ABD的周長(zhǎng)是22cm,則AE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了深化改革,某校積極開展校本課程建設(shè),計(jì)劃成立“文學(xué)鑒賞”、“科學(xué)實(shí)驗(yàn)”、“音樂舞蹈”和“手工編織”等多個(gè)社團(tuán),要求每位學(xué)生都自主選擇其中一個(gè)社團(tuán).為此,隨機(jī)調(diào)查了本校各年級(jí)部分學(xué)生選擇社團(tuán)的意向,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖表(不完整):

某校被調(diào)查學(xué)生選擇社團(tuán)意向統(tǒng)計(jì)表

選擇意向

所占百分比

文學(xué)鑒賞

a

科學(xué)實(shí)驗(yàn)

35%

音樂舞蹈

b

手工編織

10%

其他

c

根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:

(1)求本次調(diào)查的學(xué)生總?cè)藬?shù)及a,b,c的值;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若該校共有1200名學(xué)生,試估計(jì)全校選擇“科學(xué)實(shí)驗(yàn)”社團(tuán)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=16,OAB中點(diǎn),點(diǎn)C在線段OB上(不與點(diǎn)OB重合),將OC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧于點(diǎn)P,Q,且點(diǎn)P, QAB異側(cè),連接OP

(1)求證:APBQ;

(2)當(dāng)BQ=4時(shí),求扇形COQ的面積及的長(zhǎng)(結(jié)果保留π);

(3)若APO的外心在扇形COD的內(nèi)部,請(qǐng)直接寫出OC的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形 ABCD 中,對(duì)角線 AC、BD 相交于點(diǎn) O,過點(diǎn) O 的兩條直線分別交邊 AB、CD、AD、BC 于點(diǎn) E、F、G、H.

(感知)如圖,若四邊形 ABCD 是正方形,且 AG=BE=CH=DF,則 S 四邊形AEOG S 正方形 ABCD

(拓展如圖②,若四邊形 ABCD 是矩形 S 四邊形 AEOGS 矩形 ABCD,設(shè) AB=a, AD=b,BE=m, AG 的長(zhǎng)用含 a、b、m 的代數(shù)式表示);

(探究)如圖,若四邊形 ABCD 是平行四邊形,且 AB=3,AD=5,BE=1, 試確定 F、G、H 的位置,使直線 EF、GH 把四邊形 ABCD 的面積四等分.

查看答案和解析>>

同步練習(xí)冊(cè)答案