【題目】如圖,等邊AOB中,點Bx軸正半軸上,點A坐標(biāo)為(1, ),將AOB繞點O順時針旋轉(zhuǎn)15°,此時點A對應(yīng)點A′的坐標(biāo)是( 。

A.2,2B.1C.D.,

【答案】D

【解析】

AEOBE,A′HOBH,根據(jù)A點坐標(biāo)可以求出AO的長度,因△AOB是等邊三角形,∠AOA′=15°,所以△OA′H是等腰直角三角形,AO=A′O,即可求解.

解:如圖,作AEOBEA′HOBH

A1,),

OE1,AE,

OA,

∵△OAB是等邊三角形,

∴∠AOB60°,

∵∠AOA′15°,

∴∠A′OH60°15°45°,

OA′OA2,A′HOH,

A′HOH,

A′,),

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一種折疊臺燈,將其放置在水平桌面上,圖2是其簡化示意圖,測得其燈臂長為燈翠長為,底座厚度為根據(jù)使用習(xí)慣,燈臂的傾斜角固定為,

(1)當(dāng)轉(zhuǎn)動到與桌面平行時,求點到桌面的距離;

(2)在使用過程中發(fā)現(xiàn),當(dāng)轉(zhuǎn)到至時,光線效果最好,求此時燈罩頂端到桌面的高度(參考數(shù)據(jù):,結(jié)果精確到個位).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),下列說法正確的是(

A.該函數(shù)的圖象的開口向下B.該函數(shù)圖象的頂點坐標(biāo)是

C.當(dāng)時,的增大而增大D.該函數(shù)的圖象與軸有兩個不同的交點

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】廊橋是我國古老的文化遺產(chǎn)如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為,為保護(hù)廊橋的安全,在該拋物線上距水面高為8米的點、處要安裝兩盞警示燈,則這兩盞燈的水平距離____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】取什么值時,關(guān)于的方程有兩個相等的實數(shù)根?求出這時方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉善縣將開展以珍愛生命,鐵拳護(hù)航為主題的交通知識競賽,某校對參加選拔賽的若干名同學(xué)的成績按A,BC,D四個等級進(jìn)行統(tǒng)計,繪制成如下不完整的頻數(shù)統(tǒng)計表和扇形統(tǒng)計圖

成績等級

頻數(shù)(人數(shù))

頻率

A

4

0.08

B

m

0.52

C

n

D

合計

1

1)求m   ,n   ;

2)在扇形統(tǒng)計圖中,求“C等級所對應(yīng)圓心角的度數(shù);

3“A等級4名同學(xué)中有3名男生和1名女生,現(xiàn)從中隨機挑選2名同學(xué)代表學(xué)校參加全縣比賽,請用樹狀圖法或列表法求出恰好選中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行漢字聽寫比賽,每位學(xué)生聽寫漢字40個,比賽結(jié)束后隨機抽查部分學(xué)生聽寫正確的字?jǐn)?shù),以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計圖表.

根據(jù)以上信息解決下列問題:

1)補全條形統(tǒng)計圖;

2)扇形統(tǒng)計圖中“C所對應(yīng)的圓心角的度數(shù)是   

3)若該校共有1210名學(xué)生,如果聽寫正確的字?jǐn)?shù)少于25,則定為不合格;請你估計這所學(xué)校本次比賽聽寫不合格的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長均為1,線段AB的端點均在小正方形的頂點上,請按要求畫出圖形并計算.

1)以線段AB為一腰的等腰ABC,點C在小正方形的頂點上,且SABC6;

2)以BC為對角線作平行四邊形BDCE,點D,E均在小正方形的頂點上,且∠ABD45°;

3)連接DE,請直接寫出線段DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年3月國際風(fēng)箏節(jié)期間,王大伯決定銷售一批風(fēng)箏,經(jīng)市場調(diào)研:蝙蝠型風(fēng)箏進(jìn)價每個為10元,當(dāng)售價每個為12元時,銷售量為180個,若售價每提高1元,銷售量就會減少10個,請回答以下問題:

(1)用表達(dá)式表示蝙蝠型風(fēng)箏銷售量y(個)與售價x(元)之間的函數(shù)關(guān)系(12≤x≤30);

(2)王大伯為了讓利給顧客,并同時獲得840元利潤,售價應(yīng)定為多少?

(3)當(dāng)售價定為多少時,王大伯獲得利潤W最大,最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案