精英家教網 > 初中數學 > 題目詳情
(2004•海淀區(qū))2003年信息產業(yè)部的統(tǒng)計數據表明,截止到10月底,我國的電話用戶總數達到5.12億,居世界首位.其中5.12億用科學記數法表示應為( )
A.0.512×109
B.5.12×108
C.51.2×107
D.512×106
【答案】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值大于10時,n是正數;當原數的絕對值小于1時,n是負數.
解答:解:5.12億戶=512 000 000戶,用科學記數法表示時n=8,
∴512 000 000=5.12×108
故選B.
點評:用科學記數法表示一個數的方法是:
(1)確定a:a是只有一位整數的數;
(2)確定n:當原數的絕對值≥10時,n為正整數,n等于原數的整數位數減1;當原數的絕對值<1時,n為負整數,n的絕對值等于原數中左起第一個非零數前零的個數(含整數位數上的零).
練習冊系列答案
相關習題

科目:初中數學 來源:2004年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2004•海淀區(qū))已知:在平面直角坐標系中,點O為坐標原點,點A的坐標為(0,2),以OA為直徑作圓B.若點D是x軸上的一動點,連接AD交圓B于點C.
(1)當tan∠DAO=時,求直線BC的解析式;
(2)過點D作DP∥y軸與過B、C兩點的直線交于點P,請任意求出三個符合條件的點P的坐標,并確定圖象經過這三個點的二次函數的解析式;
(3)若點P滿足(2)中的條件,點M的坐標為(-3,3),求線段PM與PB的和的最小值,并求出此時點P的坐標.

查看答案和解析>>

科目:初中數學 來源:2004年全國中考數學試題匯編《一次函數》(05)(解析版) 題型:解答題

(2004•海淀區(qū))如示意圖,在平面直角坐標系中,O為坐標原點,點A是x軸的負半軸上一點,以AO為直徑的⊙P經過點C(-8,4).點E(m,n)在⊙P上,且-10<m≤-5,n<0,CE與x軸相交于點M,過C點作直線CN交x軸于點N,交⊙P于點F,使得△CMN是以MN為底的等腰三角形,經過E、F兩點的直線與x軸相交于點Q.
(1)求出點A的坐標;
(2)當m=-5時,求圖象經過E、Q兩點的一次函數的解析式;
(3)當點E(m,n)在⊙P上運動時,猜想∠OQE的大小會發(fā)生怎樣的變化?請對你的猜想加以證明.

查看答案和解析>>

科目:初中數學 來源:2004年北京市海淀區(qū)中考數學試卷(2)(解析版) 題型:解答題

(2004•海淀區(qū))已知:在平面直角坐標系中,點O為坐標原點,點A的坐標為(0,2),以OA為直徑作圓B.若點D是x軸上的一動點,連接AD交圓B于點C.
(1)當tan∠DAO=時,求直線BC的解析式;
(2)過點D作DP∥y軸與過B、C兩點的直線交于點P,請任意求出三個符合條件的點P的坐標,并確定圖象經過這三個點的二次函數的解析式;
(3)若點P滿足(2)中的條件,點M的坐標為(-3,3),求線段PM與PB的和的最小值,并求出此時點P的坐標.

查看答案和解析>>

科目:初中數學 來源:2004年北京市海淀區(qū)中考數學試卷(1)(解析版) 題型:解答題

(2004•海淀區(qū))如示意圖,在平面直角坐標系中,O為坐標原點,點A是x軸的負半軸上一點,以AO為直徑的⊙P經過點C(-8,4).點E(m,n)在⊙P上,且-10<m≤-5,n<0,CE與x軸相交于點M,過C點作直線CN交x軸于點N,交⊙P于點F,使得△CMN是以MN為底的等腰三角形,經過E、F兩點的直線與x軸相交于點Q.
(1)求出點A的坐標;
(2)當m=-5時,求圖象經過E、Q兩點的一次函數的解析式;
(3)當點E(m,n)在⊙P上運動時,猜想∠OQE的大小會發(fā)生怎樣的變化?請對你的猜想加以證明.

查看答案和解析>>

科目:初中數學 來源:2004年全國中考數學試題匯編《銳角三角函數》(01)(解析版) 題型:選擇題

(2004•海淀區(qū))在△ABC中,∠C=90°,若cosB=,則sinA的值為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案