【題目】如圖①,在ABCADE中,AB=AC,AD=AEBAC=DAE,連接BDCE,BDCE相交于點F,若ABC不動,將ADE繞點A任意旋轉一個角度.

1)求證:BAD≌△CAE

2)如圖①,若∠BAC=DAE=90°,判斷線段BDCE的關系,并說明理由;

3)如圖②,若∠BAC=DAE=60°,求∠BFC的度數(shù);

4)如圖③,若∠BAC=DAE= ,直接寫出∠BFC的度數(shù)(不需說明理由)

【答案】(1)證明見解析;(2)BDCE,理由見解析;(3);(4)

【解析】試題分析:(1)由等邊三角形的性質(zhì)得出AB=AC,AD=AE,BAC=EAD,從而得出∠BAD=CAE,即可得出BAD≌△CAE.

(2)判定BDCE的關系,可以根據(jù)角的大小來判定.由∠BAC=DAE可得∠BAD=CAE,進而得BAD≌△CAE,所以∠CBF+BCF=ABC+ACB.再由∠BAC=DAE=90°,所以BDCE.

(3)根據(jù)①的∠CBF+BCF=ABC+ACB,所以∠BFC=BAC,再由∠BAC=DAE=60°,所以∠BFC=60°

(4)根據(jù)②∠BFC=BAC,所以∠BFC=α

試題解析:(1)證明:∵∠BAC=DAE,

∴∠BAC+CAD=DAE+CAD,

即∠BAD=CAE

BADCAE中,AB=AC,BAD=CAE,AD=AE,

∴△BAD≌△CAE(SAS),

(2)BDCE相互垂直,BD=CE.

由(1)知,BAD≌△CAE(SAS),

∴∠ABD=ACE,BD=CE,

∵∠BAC=90°,

∴∠CBF+BCF=ABC+ACB=90°,

∴∠BFC=90°

BDCE.

(3)由題①得∠CBF+BCF=ABC+ACB,

∵∠BAC=DAE=60°,

∴∠CBF+BCF=ABC+ACB,

∴∠BFC=BAC

∴∠BFC=60°

(4)由題(1)得∠CBF+BCF=ABC+ACB,

∵∠BAC=DAE=α

∴∠CBF+BCF=ABC+ACB,

∴∠BFC=BAC

∴∠BFC=α

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1問題背景

如圖1,在四邊形ABCD,ABAD,BAD120°BADC90°,EF分別是BC,CD上的點,EAF60°,探究圖中線段BE,EFFD之間的數(shù)量關系

小王同學探究此問題的方法是延長FD到點G,使DGBE,連結AG先證明ABE≌△ADG,再證明AEF≌△AGF,可得出結論他的結論應是 ;

2探索延伸

如圖2,若在四邊形ABCD,ABADBD180°,EF分別是BC,CD上的點EAFBAD,上述結論是否仍然成立,并說明理由

3結論應用

如圖3,在某次軍事演習中艦艇甲在指揮中心(O處)北偏西30°A,艦艇乙在指揮中心南偏東70°B,并且兩艦艇到指揮中心的距離相等.接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進,1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達EF,且兩艦艇與指揮中心O之間夾角EOF=70°試求此時兩艦艇之間的距離

4能力提高

如圖4,等腰直角三角形ABCBAC90°,ABAC,MN在邊BC,MAN45°.若BM1,CN3,試求出MN的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸于, 兩點,交軸于點,直線經(jīng)過坐標原點,與拋物線的一個交點為,與拋物線的對稱交于點,連接,點, 的坐標分別為

)求拋物線的解析式,并分別求出點和點的坐標.

)在拋物線上是否存在點,使,若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】anbn+1·(abn)3________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算﹣3a2×a3的結果為(  )
A.﹣3a5
B.3a6
C.﹣3a6
D.3a5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=52°,∠ABC與∠ACB的角平分線交于D1,∠ABD1與∠ACD1的角平分線交于點D2,依此類推,∠ABD4與∠ACD4的角平分線交于點D5,則∠BD5C的度數(shù)是 ( )

A. 56° B. 60° C. 68° D. 94°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD△ABC的高,BE平分∠ABCADE,若∠C=70°,∠BED=64°,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法錯誤的是( 。
A.aa=a2
B.2a+a=3a
C.a32=a5
D.a3÷a-1=a4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學生數(shù)學的平時成績、期中考試成績、期末考試成績分別是84分、80分、90分。如果按平時成績:期中考試成績:期末考試成績=3:3:4進行總評,那么他本學期數(shù)學總評分應為______分。

查看答案和解析>>

同步練習冊答案