【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.(不寫解答過程,直接寫出結(jié)果)
(1)若△A1B1C1與△ABC關(guān)于原點O成中心對稱,則點A1的坐標(biāo)為 ;
(2)將△ABC向右平移4個單位長度得到△A2B2C2,則點B2的坐標(biāo)為 ;
(3)將△ABC繞O點順時針方向旋轉(zhuǎn)90°,則點C走過的路徑長為 ;
(4)在x軸上找一點P,使PA+PB的值最小,則點P的坐標(biāo)為 .
【答案】(1)(2,﹣3);(2)(3,1);(3)π;(4)(,0).
【解析】
試題分析:(1)利用關(guān)于原點中心對稱的點的坐標(biāo)特征求解;
(2)利用點的平移規(guī)律求解;
(3)點C走過的路徑為以點O為圓心,OC為半徑,圓心角為90度的弧,然后根據(jù)弧長公式計算點C走過的路徑長;
(4)先確定點B關(guān)于x軸的對稱點B′坐標(biāo)為(﹣1,﹣1),連結(jié)AB′交x軸于P點,根據(jù)兩點之間線段最短可確定PA+PB的值最小,接著利用待定系數(shù)法求出直線AB′的解析式,然后求直線AB′與x軸的交點坐標(biāo)就看得到點P的坐標(biāo).
試題解析:(1)若△A1B1C1與△ABC關(guān)于原點O成中心對稱,則點A1的坐標(biāo)為(2,﹣3);
(2)將△ABC向右平移4個單位長度得到△A2B2C2,則點B2的坐標(biāo)為(3,1);
(3)將△ABC繞O點順時針方向旋轉(zhuǎn)90°,則點C走過的路徑長==π;
(4)B點關(guān)于x軸的對稱點B′坐標(biāo)為(﹣1,﹣1),連結(jié)AB′交x軸于P點,則PA+PB=PA+PB′=AB′,此時PA+PB的值最小,設(shè)直線AB′的解析式為y=kx+b,把A(﹣2,3),B′(﹣1,﹣1)代入得:,得:,所以直線AB′的解析式為y=﹣4x﹣5,當(dāng)y=0時,﹣4x﹣5=0,解得x=,所以此時點P的坐標(biāo)為(,0).
故答案為:(2,﹣3);(3,1);π;(,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生對籃球、羽毛球、乒乓球、踢毽子、跳繩等5項體育活動的喜歡程度,某校隨機抽查部分學(xué)生,對他們最喜歡的體育項目(每人只選一項)進(jìn)行了問卷調(diào)查,并將統(tǒng)計數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖:
請解答下列問題:
(1)m=%,這次共抽取了名學(xué)生進(jìn)行調(diào)查;請補全條形統(tǒng)計圖;
(2)若全校有800名學(xué)生,則該校約有多少名學(xué)生喜愛打籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,∠A+∠C=120°,則∠D等于( )
A. 30° B. 60° C. 120° D. 150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,E為格點,B,F為小正方形邊的中點,C為AE,BF的延長線的交點.
(1)AE的長等于________;
(2)若點P在線段AC上,點Q在線段BC上,且滿足AP = PQ = QB,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段PQ,并簡要說明點P,Q的位置是如何找到的(不要求證明)________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若實數(shù)x,y滿足(x﹣y)(x﹣y+3)=0,則x﹣y的值是( )
A.﹣1或﹣2B.﹣1或2C.0或3D.0或﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(滿分14分)現(xiàn)有正方形ABCD和一個以O(shè)為直角頂點的三角板,移動三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點M,N.
(1)如圖1,若點O與點A重合,則OM與ON的數(shù)量關(guān)系是__________________;
(2)如圖2,若點O在正方形的中心(即兩對角線的交點),則(1)中的結(jié)論是否仍然成立?請說明理由;
(3)如圖3,若點O在正方形的內(nèi)部(含邊界),當(dāng)OM=ON時,請?zhí)骄奎cO在移動過程中可形成什么圖形?
(4)如圖4是點O在正方形外部的一種情況.當(dāng)OM=ON時,請你就“點O的位置在各種情況下(含外部)移動所形成的圖形”提出一個正確的結(jié)論.(不必說理)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC , D為邊BC上一點,以AB、BD為鄰邊作平行四邊形ABDE , 連接AD、EC . 若BD=CD , 求證:四邊形ADCE是矩形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com