【題目】如圖,中,點的坐標為,點的坐標為.

1)求的面積;

2)如果要使全等,那么點的坐標是多少?

3)求的邊上的高.

【答案】13;(2)(4,-1)或(-13)或(-1,-1);(3

【解析】

1)觀察可得點B的坐標為(3,1),利用三角形的面積公式即可求解;

2)因為ABDABC有一條公共邊AB,故應(yīng)從點DAB的上邊、點DAB的下邊兩種情況入手進行討論,即可得出答案;

3)先根據(jù)勾股定理求出AC,設(shè)的邊上的高是h,根據(jù)三角形的面積公式即可求解.

解:(1)觀察可得點B的坐標為(31),則AB=3

=3;

2ABDABC有一條公共邊AB
當點DAB的下邊時,點D有兩種情況:①坐標是(4-1);②坐標為(-1,-1);
當點DAB的上邊時,坐標為(-13);
D的坐標是(4,-1)或(-13)或(-1,-1);

3)設(shè)的邊上的高是h,

AC= ,

,即 ,

解得:h=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bc+c的圖象如圖所示,則下列判斷中錯誤的是( 。

A. 圖象的對稱軸是直線x=﹣1 B. x>﹣1時,yx的增大而減小

C. 當﹣3<x<1時,y<0 D. 一元二次方程ax2+bx+c=0的兩個根是﹣3,1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀:多項式取某些實數(shù)時,是完全平方式.

例如:時,, 發(fā)現(xiàn): ;

時,,發(fā)現(xiàn):;

時, 發(fā)現(xiàn):;

……

根據(jù)閱讀解答以下問題:

分解因式:

若多項式是完全平方式,則之間存在某種關(guān)系,用等式表示之間的關(guān)系:

在實數(shù)范圍內(nèi),若關(guān)于的多項式是完全平方式,求值.

求多項式:的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某市近郊有一塊長為60米,寬為50米的矩形荒地,地方政府準備在此建一個綜合性休閑廣場,其中陰影部分為通道,通道的寬度均相等,中間的三個矩形(其中三個矩形的一邊長均為a米)區(qū)域?qū)佋O(shè)塑膠地面作為運動場地.設(shè)通道的寬度為x米.

1a (用含x的代數(shù)式表示);

2)若塑膠運動場地總占地面積為 2430平方米,則通道的寬度為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在△ABC,ABC=60°,CD平分∠ACBAB于點D,E在線段CD(E不與點C. D重合),且∠EAC=2EBC.

(1)如圖1,若∠EBC=27°,EB=EC,則∠DEB=___°,AEC=___°.

(2)如圖2,①求證:AE+AC=BC;

②若∠ECB=30°,且AC=BE,求∠EBC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是線段BC上的一個動點,以AD為直徑作⊙O分別交ABACE、F,連結(jié)EF,則線段EF長度的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上小明用一副三角板進行如下操作:把一副三角板中兩個直角的頂點重合,一個三角板固定不動,另一個三角板繞著重合的頂點旋轉(zhuǎn)(兩個三角板始終有重合部分).

1)當旋轉(zhuǎn)到如圖所示的位置時,量出∠α25°,通過計算得出∠AOD=∠BOC   

2)通過幾次操作小明發(fā)現(xiàn),∠α25°時.∠AOD=∠BOC仍然成立,請你幫他完成下面的說理過程.

理由:因為∠AOC=∠BOD   ;

所以,根據(jù)等式的基本性質(zhì)∠   ﹣∠COD=∠BOD﹣∠   ;

即∠AOD=∠   

3)小瑩還發(fā)現(xiàn)在旋轉(zhuǎn)過程中∠AOB和∠DOC之間存在一個不變的數(shù)量關(guān)系,請你用等式表示這個數(shù)量關(guān)系   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,點Ax軸負半軸上一個定點,點P是函數(shù)上一個動點,軸于點B,當點P的橫坐標逐漸增大時,四邊形OAPB的面積將會  

A. 先增后減 B. 先減后增 C. 逐漸減小 D. 逐漸增大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,過點C的直線MNABDAB邊上一點,過點DDEBC,交直線MNE,垂足為F,連接CDBE.

(1)求證:CEAD;

(2)當DAB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;

(3)若DAB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.

查看答案和解析>>

同步練習冊答案