【題目】LED燈具有環(huán)保節(jié)能、投射范圍大、無頻閃、使用壽命較長等特點(diǎn),在日常生活中,人們更傾向于LED燈的使用.某商場購進(jìn)了LED燈泡與普通白熾燈泡共300個,LED燈泡為每個進(jìn)價45元,售價為每個60元,普通白熾燈泡進(jìn)價為每個25元,售價為每個30元.
(1)若LED燈泡按原售價進(jìn)行銷售,而普通白熾燈泡打九折銷售,當(dāng)銷售完這批燈泡后可以獲利3200元.求該商場購進(jìn)LED燈泡與普通白熾燈泡的數(shù)量分別為多少個?
(2)該商場又購進(jìn)LED燈泡與普通白熾燈泡若干個并展開了降價促銷活動,在促銷期間,每個LED燈泡的利潤為進(jìn)價的(m+20)%,每個普通白熾燈泡按原售價降低m%銷售.結(jié)果在促銷活動中LDE燈泡的銷售量比(1)中的銷售量降低了m%,普通白熾燈泡銷售量比(1)中銷售量上升了20%,活動共獲利2400元,求m的值.
【答案】(1)購進(jìn)LED燈泡與普通白熾燈泡的數(shù)量分別為200個和100個;(2)m=45.
【解析】
(1)設(shè)該商場購進(jìn)LED燈泡x個,普通白熾燈泡的數(shù)量為y個,利用該商場購進(jìn)了LED燈泡與普通白熾燈泡共300個和銷售完這批燈泡后可以獲利3200元列方程組,然后解方程組即可;
(2)根據(jù)題意可以列出相應(yīng)的方程,從而可以求得m的值.
解:(1)設(shè)該商場購進(jìn)LED燈泡x個,普通白熾燈泡的數(shù)量為y個,
根據(jù)題意得
,
解得,
答:該商場購進(jìn)LED燈泡與普通白熾燈泡的數(shù)量分別為200個和100個;
(2)根據(jù)題意得,
45(m+20)%×200(1﹣m%)+[30(1﹣m%)﹣25]×100(1+20%)=2400
解得,m=0(舍去),或m=45.
∴m=45.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學(xué)興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次活動共調(diào)查了 人;在扇形統(tǒng)計圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補(bǔ)充完整.觀察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點(diǎn)C(0,3),與x軸分別交于點(diǎn)A,點(diǎn)B(3,0).點(diǎn)P是直線BC上方的拋物線上一動點(diǎn).
(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;
(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P運(yùn)動到什么位置時,四邊形ACPB的面積最大?求出此時P點(diǎn)的坐標(biāo)和四邊形ACPB的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某村計劃在新農(nóng)村改造過程中,擬籌資金2000元,計劃在一塊上、下底分別為10米、20米的梯形空地上種植花草(如圖所示,),村委會想在地帶與地帶種植單價為10元的太陽花,當(dāng)地帶種滿花后,已經(jīng)花了500元,請你計算一下,若繼續(xù)在地帶種植同樣的太陽花,資金是否夠用?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料:思考的同學(xué)小斌在解決連比等式問題:“已知正數(shù),,滿足,求的值”時,采用了引入?yún)?shù)法,將連比等式轉(zhuǎn)化為了三個等式,再利用等式的基本性質(zhì)求出參數(shù)的值.進(jìn)而得出,,之間的關(guān)系,從而解決問題.過程如下:
解;設(shè),則有:
,,,
將以上三個等式相加,得.
,,都為正數(shù),
,即,.
.
仔細(xì)閱讀上述材料,解決下面的問題:
(1)若正數(shù),,滿足,求的值;
(2)已知,,,互不相等,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程.
()對于任意的實(shí)數(shù),判斷方程的根的情況,并說明理由.
()若方程的一個根為,求出的值及方程的另一個根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正方形ABCD邊上一點(diǎn),以O為圓心,OB為半徑畫圓與AD交于點(diǎn)E,過點(diǎn)E作⊙O的切線交CD于F,將△DEF沿EF對折,點(diǎn)D的對稱點(diǎn)D'恰好落在⊙O上.若AB=6,則OB的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】車輛轉(zhuǎn)彎時,能否順利通過直角彎道的標(biāo)準(zhǔn)是:車輛是否可以行使到和路的邊界夾角是45°的位置(如圖1中②的位置),例如,圖2是某巷子的俯視圖,巷子路面寬4m,轉(zhuǎn)彎處為直角,車輛的車身為矩形ABCD,CD與DE、CE的夾角都是45°時,連接EF,交CD于點(diǎn)G,若GF的長度至少能達(dá)到車身寬度,則車輛就能通過.
(1)試說明長8m,寬3m的消防車不能通過該直角轉(zhuǎn)彎;
(2)為了能使長8m,寬3m的消防車通過該彎道,可以將轉(zhuǎn)彎處改為圓弧(分別是以O為圓心,以OM和ON為半徑的弧),具體方案如圖3,其中OM⊥OM′,請你求出ON的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有長為18米的籬笆,一面利用墻(墻的最大可用長度為10m),圍成中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬AB為x米,面積為Sm2.
(1)求S與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)如果要圍成面積為24m2的花圃,AB的長是多少米?
(3)能圍成面積比24m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com