【題目】解方程組:
(1) ; (2) ;
(3)
【答案】(1);(2);(3)
【解析】試題分析:(1)直接將兩個方程相加,可消去y,解出x,再將x的值代入方程①解出y即可;(2)用第二個方程減去第一個方程,可消去x,解出y,再將y的值代入方程①解出x即可;(3)將方程①×2并和方程②相加,可消去y,解出x,再將x的值代入方程①解出y即可.
試題解析:
(1)由①+②得:3x=9,x=3,
將x=3代入①得:3-y=5,y=-2,
所以此方程組的解為;
(2)由②-①可得:5y=5,y=1,
將y=1代入①得:x-2=1,x=3,
所以此方程組的解為;
(3)由①×2+②得:4x+3x=14,x=2,
將x=2代入①得: 4-y=7,y=-3.
所以此方程組的解為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(0,1),M(3,2),N(4,4).動點(diǎn)P從點(diǎn)A出發(fā),沿y軸以每秒1個單位長的速度向上移動,且過點(diǎn)P的直線l:y=-x+b也隨之移動,設(shè)移動時間為t秒.
(1)當(dāng)t=2時,則AP= ,此時點(diǎn)P的坐標(biāo)是 。
(2)當(dāng)t=3時,求過點(diǎn)P的直線l:y=-x+b的解析式?
(3)當(dāng)直線l:y=-x+b從經(jīng)過點(diǎn)M到點(diǎn)N時,求此時點(diǎn)P向上移動多少秒?
(4)點(diǎn)Q在x軸時,若S△ONQ=8時,請直按寫出點(diǎn)Q的坐標(biāo)是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)下列式子化簡后的結(jié)果為x6的是( )
A. x3+x3 B. x3x3 C. (x3)3 D. x12÷x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+2與雙曲線相交于點(diǎn)A(m,3),與x軸交于點(diǎn)C.
(1)求雙曲線解析式;
(2)點(diǎn)P在y軸上,如果△ACP的面積為3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在體育中考跳繩項目中,某小組的8位成員跳繩次數(shù)如下:175、176、175、180、179、176、180、176,這組數(shù)據(jù)的眾數(shù)為( )
A.175B.176C.179D.180
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,過點(diǎn)A(﹣,0)的兩條直線分別交y軸于B、C兩點(diǎn),且B、C兩點(diǎn)的縱坐標(biāo)分別是一元二次方程x2﹣2x﹣3=0的兩個根
(1)求線段BC的長度;
(2)試問:直線AC與直線AB是否垂直?請說明理由;
(3)若點(diǎn)D在直線AC上,且DB=DC,求點(diǎn)D的坐標(biāo);
(4)在(3)的條件下,直線BD上是否存在點(diǎn)P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?若存在,請直接寫出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com