已知:關(guān)于x的一元二次方程ax2+2(a-3)x+a+3=0有兩個(gè)實(shí)數(shù)根,且a為非負(fù)整數(shù).
(1)求a的值;
(2)若拋物線y=ax2+2(a-3)x+a+3向下平移m(m>0)個(gè)單位后過點(diǎn)(1,n)和點(diǎn)(2,2n+1),求m的值;
(3)若拋物線y=ax2+2(a-3)x+a+3+k上存在兩個(gè)不同的點(diǎn)P、Q關(guān)于原點(diǎn)對(duì)稱,求k的取值范圍.
分析:(1)根據(jù)根的判別式△≥0,根據(jù)一元二次方程成立的條件,知a≠0,求解即可;
(2)根據(jù)坐標(biāo)平移的性質(zhì)得到新點(diǎn)坐標(biāo),結(jié)合已知條件列方程組解答;
(3)根據(jù)中心對(duì)稱的定義,設(shè)出兩個(gè)中心對(duì)稱點(diǎn),代入解析式列出方程組,再結(jié)合根的判別式解答.
解答:解:(1)依題意,得△=[2(a-3)]2-4a(a+3)=-36a+36≥0,
解得a≤1,
又a≠0且a為非負(fù)整數(shù),
∴a=1,
∴y=x2-4x+4.
(2)解法一:
拋物線y=x2-4x+4過點(diǎn)(1,1),(2,0),
向下平移m(m>0)個(gè)單位后得到點(diǎn)(1,n)和點(diǎn)(2,2n+1)
0-(2n+1)=m
1-n=m
,解得m=3.
解法二:
拋物線y=x2-4x+4向下平移m(m>0)個(gè)單位后得:y=x2-4x+4-m,
將點(diǎn)(1,n)和點(diǎn)(2,2n+1)代入解析式得
1-m=n
-m=2n+1
,
解得m=3.
(3)設(shè)P(x0,y0),則Q(-x0,-y0),
∵P、Q在拋物線y=x2-4x+4+k上,將P、Q兩點(diǎn)坐標(biāo)分別代入得:
x02-4x0+4+k=y0
x02+4x0+4+k=-y0
,
將兩方程相加得:2x02+8+2k=0,
即x02+4+k=0,
∵△=-4(4+k)>0,
∴k<-4.
點(diǎn)評(píng):此題考查了拋物線與x軸的交點(diǎn)坐標(biāo)和根的判別式,綜合性很強(qiáng),同時(shí)要利用方程組進(jìn)行解答.解答時(shí)要體會(huì)方程組的解即為交點(diǎn)坐標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的一元二次方程mx2-(2m+n)x+m+n=0①.
(1)求證:方程①有兩個(gè)實(shí)數(shù)根;
(2)求證:方程①有一個(gè)實(shí)數(shù)根為1;
(3)設(shè)方程①的另一個(gè)根為x1,若m+n=2,m為正整數(shù)且方程①有兩個(gè)不相等的整數(shù)根時(shí),確定關(guān)于x的二次函數(shù)y=mx2-(2m+n)x+m+n的解析式;
(4)在(3)的條件下,把Rt△ABC放在坐標(biāo)系內(nèi),其中∠CAB=90°,點(diǎn)A、B的坐標(biāo)分別為(1,0)、(4,0),BC=5,將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在拋物線上時(shí),求△ABC平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、已知:關(guān)于x的一元二次方程ax2+bx+c=3的一個(gè)根為x=2,且二次函數(shù)y=ax2+bx+c的對(duì)稱軸是直線x=2,則拋物線的頂點(diǎn)坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的一元二次方程x2-2(m+1)x+m2=0有兩個(gè)整數(shù)根,m<5且m為整數(shù).
(1)求m的值;
(2)當(dāng)此方程有兩個(gè)非零的整數(shù)根時(shí),將關(guān)于x的二次函數(shù)y=x2-2(m+1)x+m2的圖象沿x軸向左平移4個(gè)單位長(zhǎng)度,求平移后的二次函數(shù)圖象的解析式;
(3)當(dāng)直線y=x+b與(2)中的兩條拋物線有且只有三個(gè)交點(diǎn)時(shí),求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的一元二次方程x2-2x+c=0的一個(gè)實(shí)數(shù)根為3.
(1)求c的值;
(2)二次函數(shù)y=x2-2x+c,當(dāng)-2<x≤2時(shí),y的取值范圍;
(3)二次函數(shù)y=x2-2x+c與x軸交于點(diǎn)A、B(A左B右),頂點(diǎn)為點(diǎn)C,問:是否存在這樣的點(diǎn)P,以P為位似中心,將△ABC放大為原來(lái)的2倍后得到△DEF(即△EDF∽△ABC,相似比為2),使得點(diǎn)D、E恰好在二次函數(shù)上且DE∥AB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•延慶縣二模)已知:關(guān)于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有實(shí)根,求m的取值范圍;
(2)在(1)的條件下,且m取最小的整數(shù),求此時(shí)方程的兩個(gè)根;
(3)在(2)的前提下,二次函數(shù)y=mx2-(2m+2)x+m-1與x軸有兩個(gè)交點(diǎn),連接這兩點(diǎn)間的線段,并以這條線段為直徑在x軸的上方作半圓P,設(shè)直線l的解析式為y=x+b,若直線l與半圓P只有兩個(gè)交點(diǎn)時(shí),求出b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案