【題目】新定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心.根據(jù)準外心的定義,探究如下問題:如圖,在RtΔABC中,∠C=90°,AB=10,AC=6,如果準外心P在BC邊上,那么PC的長為 ________.
【答案】4或
【解析】
試題由到兩個點距離相等的點在這兩個點為端點的線段的垂直平分線上,則點P可在三角形任一邊的垂直平分線上,則點P可是三角形任一邊的垂直平分線與BC的交點,根據(jù)題意分三種情況進行討論:①P在BC的垂直平分線上;②P在AB的垂直平分線上;③P在AC的垂直平分線上.
解:在RtΔABC中,∠C=90°,AB=10,AC=6,則BC==8.
由到兩個點距離相等的點在這兩個點為端點的線段的垂直平分線上,則點P可在三角形任一邊的垂直平分線上,根據(jù)題意分三種情況進行討論:
①P在BC的垂直平分線上,則P為BC中點,則PC=BC=4;
②P在AB的垂直平分線上,設PC=x,則PB=PA=8-x,
在Rt△PAC中,AC2+PC2=PA2,即36+x2=(8-x)2,解得x=,即PC=;
③P在AC的垂直平分線上,又AC的垂直平分線平行于BC,則P不可能在BC上,此時不成立.
故答案為4或.
科目:初中數(shù)學 來源: 題型:
【題目】一輛慢車和一輛快車沿相同路線從A地到B地,所行駛的路程與時間的函數(shù)圖象如圖所示,下列說法正確的有()個
①快車追上慢車需6小時
②慢車比快車早出發(fā)2小時
③快車速度為46km/h
④慢車速度為46km/h
⑤AB兩地相距828km
⑥快車14小時到達B地
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,OD⊥AB,垂足為點C,交⊙O于點D,點E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度數(shù);
(2)若OC=3,OA=6,求tan∠DEB的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)
(1)若△CEF與△ABC相似,且當AC=BC=2時,求AD的長;
(2)若△CEF與△ABC相似,且當AC=3,BC=4時,求AD的長;
(2)當點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市“健益”超市購進一批元/千克的綠色食品,如果以元/千克銷售,那么每天可售出千克.由銷售經(jīng)驗知,每天銷售量(千克)與銷售單價(元)()存在如下圖所示的一次函數(shù)關系.
(1)試求出y與x的函數(shù)關系式;
(2)設“健益”超市銷售該綠色食品每天獲得利潤p元,當銷售單價為何值時,每天可獲得 最大利潤?最大利潤是多少?
(3)根據(jù)市場調查,該綠色食品每天可獲利潤不超過4480元,現(xiàn)該超市經(jīng)理要求每天利潤不得低于4180元,請你幫助該超市確定綠色食品銷售單價x的范圍(直接寫出).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD,點E是BC上一點,點F是CD延長線上一點,連接EF,若BE=DF,點P是EF的中點.
(1)求證:AE=AF;
(2)若∠AEB=75°,求∠CPD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在方格紙中,△ABC的三個頂點及D,E,F,G,H五個點分別位于小正方形的頂點上.
(1)現(xiàn)以D,E,F,G,H中的三個點為頂點畫三角形,在所畫的三角形中與△ABC不全等但面積相等的三角形是 (只需要填一個三角形);
(2)先從D,E兩個點中任意取一個點,再從F,G,H三個點中任意取兩個不同的點,以所取的這三個點為頂點畫三角形,畫樹狀圖求所畫三角形與△ABC面積相等的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com